Search Results

Now showing 1 - 3 of 3
  • Item
    Towards Customizable Chart Visualizations of Tabular Data Using Knowledge Graphs
    (Cham : Springer, 2020) Wiens, Vitalis; Stocker, Markus; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    Scientific articles are typically published as PDF documents, thus rendering the extraction and analysis of results a cumbersome, error-prone, and often manual effort. New initiatives, such as ORKG, focus on transforming the content and results of scientific articles into structured, machine-readable representations using Semantic Web technologies. In this article, we focus on tabular data of scientific articles, which provide an organized and compressed representation of information. However, chart visualizations can additionally facilitate their comprehension. We present an approach that employs a human-in-the-loop paradigm during the data acquisition phase to define additional semantics for tabular data. The additional semantics guide the creation of chart visualizations for meaningful representations of tabular data. Our approach organizes tabular data into different information groups which are analyzed for the selection of suitable visualizations. The set of suitable visualizations serves as a user-driven selection of visual representations. Additionally, customization for visual representations provides the means for facilitating the understanding and sense-making of information.
  • Item
    Creating a Scholarly Knowledge Graph from Survey Article Tables
    (Cham : Springer, 2020) Oelen, Allard; Stocker, Markus; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    Due to the lack of structure, scholarly knowledge remains hardly accessible for machines. Scholarly knowledge graphs have been proposed as a solution. Creating such a knowledge graph requires manual effort and domain experts, and is therefore time-consuming and cumbersome. In this work, we present a human-in-the-loop methodology used to build a scholarly knowledge graph leveraging literature survey articles. Survey articles often contain manually curated and high-quality tabular information that summarizes findings published in the scientific literature. Consequently, survey articles are an excellent resource for generating a scholarly knowledge graph. The presented methodology consists of five steps, in which tables and references are extracted from PDF articles, tables are formatted and finally ingested into the knowledge graph. To evaluate the methodology, 92 survey articles, containing 160 survey tables, have been imported in the graph. In total, 2626 papers have been added to the knowledge graph using the presented methodology. The results demonstrate the feasibility of our approach, but also indicate that manual effort is required and thus underscore the important role of human experts.
  • Item
    Representing Semantified Biological Assays in the Open Research Knowledge Graph
    (Cham : Springer, 2020) Anteghini, Marco; D'Souza, Jennifer; Martins dos Santos, Vitor A.P.; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles.