Search Results

Now showing 1 - 3 of 3
  • Item
    Reversible magnetism switching of iron oxide nanoparticle dispersions by controlled agglomeration
    (Cambridge : Royal Society of Chemistry, 2021) Müssig, Stephan; Kuttich, Björn; Fidler, Florian; Haddad, Daniel; Wintzheimer, Susanne; Kraus, Tobias; Mandel, Karl
    The controlled agglomeration of superparamagnetic iron oxide nanoparticles (SPIONs) was used to rapidly switch their magnetic properties. Small-angle X-ray scattering (SAXS) and dynamic light scattering showed that tailored iron oxide nanoparticles with phase-changing organic ligand shells agglomerate at temperatures between 5 °C and 20 °C. We observed the concurrent change in magnetic properties using magnetic particle spectroscopy (MPS) with a temporal resolution on the order of seconds and found reversible switching of magnetic properties of SPIONs by changing their agglomeration state. The non-linear correlation between magnetization amplitude from MPS and agglomeration degree from SAXS data indicated that the agglomerates' size distribution affected magnetic properties.
  • Item
    Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution
    (Cambridge : Royal Society of Chemistry, 2021) Sushmita, Kumari; Formanek, Petr; Fischer, Dieter; Pötschke, Petra; Madras, Giridhar; Bose, Suryasarathi
    The use of electronic devices and wireless networks is increasing rapidly, and electromagnetic (EM) pollution remediation remains a challenge. We employed a unique approach to fabricate two ultrathin (approx. 53 μm) multilayered assemblies to address this. By sequentially stacking thin films of polyvinylidene difluoride (PVDF) and polycarbonate (PC) nanocomposites and interfacially locking them with a mutually miscible polymer (PMMA, polymethyl methacrylate), materials with enhanced structural properties and electromagnetic interference (EMI) shielding performance can be designed. Utilizing reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) as a template, ferrite was grown on the surface to design two different nanohybrid structures (rGO–Fe3O4 and MoS2–Fe3O4). PVDF was composited with either rGO–Fe3O4 or MoS2–Fe3O4, and multiwall carbon nanotubes (CNTs) were dispersed in the PC component. As PC and PVDF are immiscible, their poor interface would result in inferior structural properties, which can be challenging in designing EMI shielding materials due to cyclic thermal fatigue. Hence, PMMA is sandwiched to interfacially stitch the components (PC and PVDF) and improve interfacial adhesion. This was confirmed using SEM/EDS and Raman mapping/imaging. The mechanical stability of the multilayered assemblies was characterized using a dynamic mechanical analyzer (DMA), and the storage modulus was found to be as high as 2767 MPa at 40 °C (@constant frequency and strain amplitude), for the multilayered film with rGO–Fe3O4 in PVDF, PMMA as a sandwich layer and CNTs in PC. A typical assembly of 9 multilayers (∼480 μm) with rGO–Fe3O4 in PVDF, and CNTs in PC, and interfacially stitched with PMMA gave rise to a high EMI shield effectiveness (SET) of −26.3 dB @ 26.5 GHz. This unique arrangement of a multilayered assembly suppressed EMI primarily by absorption.
  • Item
    Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes
    (Cambridge : Royal Society of Chemistry, 2023) Bornamehr, Behnoosh; El Gaidi, Hiba; Arnold, Stefanie; Pameté, Emmanuel; Presser, Volker
    Due to their high energy density, Li-ion batteries have become indispensable for energy storage in many technical devices. Prussian blue and its analogs are a versatile family of materials. Apart from their direct use as an alkali-ion battery electrode, they are a promising source for templating other compounds due to the presence of carbon, nitrogen, and metallic elements in their structure, ease of synthesis, and high tunability. In this study, homogeneous iron vanadate derivatization from iron vanadium Prussian blue was successfully carried out using an energy efficient infrared furnace utilizing CO2 gas. Iron-vanadate is an inherently unstable electrode material if cycled at low potentials vs. Li/Li+. Several parameters were optimized to achieve a stable electrochemical performance of this derivative, and the effect of surfactants, such as tannic acid, sodium dodecylbenzene sulfonate, and polyvinylpyrrolidone were shown with their role in the morphology and electrochemical performance. While stabilizing the performance, we demonstrate that the type and order of addition of these surfactants are fundamental for a successful coating formation, otherwise they can hinder the formation of PBA, which has not been reported previously. Step-by-step, we illustrate how to prepare self-standing electrodes for Li-ion battery cells without using an organic solvent or a fluorine-containing binder while stabilizing the electrochemical performance. A 400 mA h g−1 capacity at the specific current of 250 mA g−1 was achieved after 150 cycles while maintaining a Coulombic efficiency of 99.2% over an extended potential range of 0.01–3.50 V vs. Li/Li+.