Search Results

Now showing 1 - 3 of 3
  • Item
    Recent advances in single molecule magnetism of dysprosium-metallofullerenes
    (Cambridge : Royal Society of Chemistry, 2019) Spree, L.; Popov, A.A.
    This article outlines the magnetic properties of single molecule magnets based on Dy-encapsulating endohedral metallofullerenes. The factors that govern these properties, such as the influence of different non-metal species in clusterfullerenes, the cage size, and cage isomerism are discussed, as well as the recent successful isolation of dimetallofullerenes with unprecedented magnetic properties. Finally, recent advances towards the organization of endohedral metallofullerenes in 1D, 2D, and 3D ordered structures with potential for devices are reviewed.
  • Item
    Reversible magnetism switching of iron oxide nanoparticle dispersions by controlled agglomeration
    (Cambridge : Royal Society of Chemistry, 2021) Müssig, Stephan; Kuttich, Björn; Fidler, Florian; Haddad, Daniel; Wintzheimer, Susanne; Kraus, Tobias; Mandel, Karl
    The controlled agglomeration of superparamagnetic iron oxide nanoparticles (SPIONs) was used to rapidly switch their magnetic properties. Small-angle X-ray scattering (SAXS) and dynamic light scattering showed that tailored iron oxide nanoparticles with phase-changing organic ligand shells agglomerate at temperatures between 5 °C and 20 °C. We observed the concurrent change in magnetic properties using magnetic particle spectroscopy (MPS) with a temporal resolution on the order of seconds and found reversible switching of magnetic properties of SPIONs by changing their agglomeration state. The non-linear correlation between magnetization amplitude from MPS and agglomeration degree from SAXS data indicated that the agglomerates' size distribution affected magnetic properties.
  • Item
    Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes
    (Cambridge : Royal Society of Chemistry, 2016) Müller, C.; Neckel, I.; Monecke, M.; Dzhagan, V.; Salvan, G.; Schulze, S.; Baunack, S.; Gemming, T.; Oswald, S.; Engemaiere, V.; Mosca, D.H.
    We report the fabrication of Ni2.7Mn0.9Ga0.4/InGaAs bilayers on GaAs (001)/InGaAs substrates by molecular beam epitaxy. To form freestanding microtubes the bilayers have been released from the substrate by strain engineering. Microtubes with up to three windings have been successfully realized by tailoring the size and strain of the bilayer. The structure and magnetic properties of both, the initial films and the rolled-up microtubes, are investigated by electron microscopy, X-ray techniques and magnetization measurements. A tetragonal lattice with c/a = 2.03 (film) and c/a = 2.01 (tube) is identified for the Ni2.7Mn0.9Ga0.4 alloy. Furthermore, a significant influence of the cylindrical geometry and strain relaxation induced by roll-up on the magnetic properties of the tube is found.