Search Results

Now showing 1 - 2 of 2
  • Item
    Thermalization by a synthetic horizon
    (College Park, MD : APS, 2022) Mertens, Lotte; Moghaddam, Ali G.; Chernyavsky, Dmitry; Morice, Corentin; van den Brink, Jeroen; van Wezel, Jasper
    Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the postquench Hamiltonian matches the entanglement Hamiltonian of the prequench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally.
  • Item
    RIXS interferometry and the role of disorder in the quantum magnet Ba3 Ti3-x Irx O9
    (College Park, MD : APS, 2023) Magnaterra, M.; Moretti Sala, M.; Monaco, G.; Becker, P.; Hermanns, M.; Warzanowski, P.; Lorenz, T.; Khomskii, D. I.; van Loosdrecht, P. H. M.; van den Brink, J.; Grüninger, M.
    Motivated by several claims of spin-orbit-driven spin-liquid physics in hexagonal Ba3Ti3-xIrxO9 hosting Ir2O9 dimers, we report on resonant inelastic x-ray scattering (RIXS) at the Ir L3 edge for different x. We demonstrate that magnetism in Ba3Ti3-xIrxO9 is governed by an unconventional realization of strong disorder, where cation disorder affects the character of the local moments. RIXS interferometry, studying the RIXS intensity over a broad range of transferred momentum q, is ideally suited to assign different excitations to different Ir sites. We find pronounced Ir-Ti site mixing. Both ions are distributed over two crystallographically inequivalent sites, giving rise to a coexistence of quasimolecular singlet states on Ir2O9 dimers and spin-orbit-entangled j=1/2 moments of 5d5Ir4+ ions. RIXS reveals different kinds of strong magnetic couplings for different bonding geometries, highlighting the role of cation disorder for the suppression of long-range magnetic order in this family of compounds.