Search Results

Now showing 1 - 2 of 2
  • Item
    Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals
    (New York, NY : American Inst. of Physics, 2020) Boy, Johannes; Handwerg, Martin; Mitdank, RĂ¼diger; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the charge carrier density, mobility, and Seebeck coefficient of melt-grown, bulk ZnGa2O4 single crystals was measured between 10 K and 310 K. The electrical conductivity at room temperature is about σ = 286 S/cm due to a high electron concentration of n = 3.26 Ă— 1019 cm−3 caused by unintentional doping. The mobility at room temperature is μ = 55 cm2/V s, whereas the scattering on ionized impurities limits the mobility to μ = 62 cm2/Vs for temperatures lower than 180 K. The Seebeck coefficient relative to aluminum at room temperature is SZnGa2O4−Al = (−125 ± 2) μV/K and shows a temperature dependence as expected for degenerate semiconductors. At low temperatures, around 60 K, we observed the maximum Seebeck coefficient due to the phonon drag effect. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Temperature dependence of the complex permittivity in microwave range of some industrial polymers
    (New York, NY : American Inst. of Physics, 2022) Porteanu, Horia-Eugen; Kaempf, Rudolf; Flisgen, Thomas; Heinrich, Wolfgang
    The microwave properties of a number of polymers common in industry are investigated. A cylindrical resonator in the TM012 mode is used. The cavity perturbation method and detailed COMSOL simulations are applied for extracting the complex permittivity as a function of temperature. The results are useful for the design of plastic processing tools by heating with electromagnetic fields. The intrinsic parameters of absorption are derived based on two exponential decays: polarization and Arrhenius dependence of the decay times on temperature.