Search Results

Now showing 1 - 5 of 5
  • Item
    A new model of meteoric calcium in the mesosphere and lower thermosphere
    (Katlenburg-Lindau : EGU, 2018-10-16) Plane, John M. C.; Feng, Wuhu; Gómez Martín, Juan Carlos; Gerding, Michael; Raizada, Shikha
    Meteoric ablation produces layers of metal atoms in the mesosphere and lower thermosphere (MLT). It has been known for more than 30 years that the Ca atom layer is depleted by over 2 orders of magnitude compared with Na, despite these elements having nearly the same elemental abundance in chondritic meteorites. In contrast, the Ca+ ion abundance is depleted by less than a factor of 10. To explain these observations, a large database of neutral and ion–molecule reaction kinetics of Ca species, measured over the past decade, was incorporated into the Whole Atmosphere Community Climate Model (WACCM). A new meteoric input function for Ca and Na, derived using a chemical ablation model that has been tested experimentally with a Meteoric Ablation Simulator, shows that Ca ablates almost 1 order of magnitude less efficiently than Na. WACCM-Ca simulates the seasonal Ca layer satisfactorily when compared with lidar observations, but tends to overestimate Ca+ measurements made by rocket mass spectrometry and lidar. A key finding is that CaOH and CaCO3 are very stable reservoir species because they are involved in essentially closed reaction cycles with O2 and O. This has been demonstrated experimentally for CaOH, and in this study for CaCO3 using electronic structure and statistical rate theory. Most of the neutral Ca is therefore locked in these reservoirs, enabling rapid loss through polymerization into meteoric smoke particles, and this explains the extreme depletion of Ca.
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part I: Temperature determination near current zero
    (Basel : MDPI, 2020) Methling, Ralf; Khakpour, Alireza; Götte, Nicolas; Uhrlandt, Dirk
    Wall-stabilized arcs dominated by nozzle–ablation are key elements of self-blast circuit breakers. In the present study, high-current arcs were investigated using a model circuit breaker (MCB) in CO2 as a gas alternative to SF6 (gas sulfur hexafluoride) and in addition a long polytetrafluoroethylene nozzle under ambient conditions for stronger ablation. The assets of different methods for optical investigation were demonstrated, e.g., high-speed imaging with channel filters and optical emission spectroscopy. Particularly the phase near current zero (CZ) crossing was studied in two steps. In the first step using high-speed cameras, radial temperature profiles have been determined until 0.4 ms before CZ in the nozzle. Broad temperature profiles with a maximum of 9400 K have been obtained from analysis of fluorine lines. In the second step, the spectroscopic sensitivity was increased using an intensified CCD camera, allowing single-shot measurements until few microseconds before CZ in the MCB. Ionic carbon and atomic oxygen emission were analyzed using absolute intensities and normal maximum. The arc was constricted and the maximum temperature decreased from > 18,000 K at 0.3 ms to about 11,000 K at 0.010 ms before CZ. The arc plasma needs about 0.5–1.0 ms after both the ignition phase and the current zero crossing to be completely dominated by the ablated wall material. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Ablation-dominated arcs in CO2 atmosphere—Part II: Molecule emission and absorption
    (Basel : MDPI, 2020) Methling, Ralf; Götte, Nicolas; Uhrlandt, Dirk
    Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high-current arcs as key elements of self-blast circuit breakers. The arc in a model circuit breaker (MCB) in CO2 with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as a background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C2 Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective
    (Weinheim : Wiley-VCH, 2020) Shen, Huidong; Peppel, Tim; Strunk, Jennifer; Sun, Zhenyu
    Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Wege zu weniger klimaschädlichem Luftverkehr – Politik in Deutschland
    (Hamburg : HAW Hamburg, 2022-11-03) Menge, Susanne
    Fliegen bringt unsere Welt näher zusammen und das ist gut so. Fliegen ist aber auch eine der klimaschädlichsten Arten des Reisens. Der Traum vom Fliegen hat sich für die Menschheit erfüllt. Nun muss auch der Traum vom klimaneutralen Fliegen wahr werden, ein "weiter so" ist keine Option. Diese Erkenntnis hat sich bei vielen Entscheidern durchgesetzt. In Forschung, Entwicklung und Industrie wird hervorragende Arbeit geleistet, um dieses Ziel zu erreichen. Die Branche selbst hat jedoch noch nicht alle Reflexe abgelegt, um Entwicklungen zu bremsen, die dem Wachstum des Luftverkehrs einen Dämpfer verleihen könnten. Dabei ist der Weg aus der Klimakrise bis auf weiteres nicht mit einer reinen Antriebs- oder Kraftstoffwende zu bewältigen, das gilt sowohl für Verkehre am Boden, als auch in der Luft.