Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy

2012, Passig, J., Irsig, R., Truong, N.X., Fennel, T., Tiggesbäumker, J., Meiwes-Broer, K.H.

The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering.

Loading...
Thumbnail Image
Item

Attosecond electron spectroscopy using a novel interferometric pump-probe technique

2010, Mauritsson, J., Remetter, T., Swoboda, M., Klünder, K., L'Huillier, A., Schafer, K.J., Ghafur, O., Kelkensberg, F., Siu, W., Johnsson, P., Vrakking, M.J.J., Znakovskaya, I., Uphues, T., Zherebtsov, S., Kling, M.F., Lépine, F., Benedetti, E., Ferrari, F., Sansone, G., Nisoli, M.

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.