Search Results

Now showing 1 - 2 of 2
  • Item
    Rolled-up tubes and cantilevers by releasing SrRuO 3-Pr 0.7Ca 0.3MnO 3 nanomembranes
    (New York, NY [u.a.] : Springer, 2011) Deneke, C.; Wild, E.; Boldyreva, K.; Baunack, S.; Cendula, P.; Mönch, I.; Simon, M.; Malachias, A.; Dörr, K.; Schmidt, O.G.
    Three-dimensional micro-objects are fabricated by the controlled release of inherently strained SrRuO 3/Pr 0.7Ca 0.3MnO 3/SrRuO 3 nanometer-sized trilayers from SrTiO 3 (001) substrates. Freestanding cantilevers and rolled-up microtubes with a diameter of 6 to 8 μm are demonstrated. The etching behavior of the SrRuO3 film is investigated, and a selectivity of 1:9,100 with respect to the SrTiO3 substrate is found. The initial and final strain states of the rolled-up oxide layers are studied by X-ray diffraction on an ensemble of tubes. Relaxation of the sandwiched Pr0.7Ca0.3MnO3 layer towards its bulk lattice parameter is observed as the major driving force for the roll-up of the trilayers. Finally, μ-diffraction experiments reveal that a single object can represent the ensemble proving a good homogeneity of the rolled-up tubes.
  • Item
    Mechanistic insight of TiCl4catalyzed formal [3 + 3] cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles
    (London : RSC Publishing, 2015) Nisa, Riffat Un; Maria, Maria; Wasim, Fatima; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of TiCl4 mediated formal [3 + 3] cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles is studied at the B3LYP level of density functional theory (DFT) to rationalize the experimental regioselectivity. Methyl and trifluoromethyl substituted 1,3 dielectrophiles are studied theoretically since they show different regioselectivities. Two different mechanisms involving 1,2 and 1,4 addition of 1,3-bis(silyl enol ethers) on 1,3-dielectrophiles are studied for each dienophile. The intramolecular transition metal catalyzed and non-catalyzed dynamic shift of the silyl moiety is also studied. The structure of the 1,3 dienophile and the associated Mulliken charges are the driving forces for different regioselectivities in methyl and trifluoromethyl dienophiles.