Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy

2012, Passig, J., Irsig, R., Truong, N.X., Fennel, T., Tiggesbäumker, J., Meiwes-Broer, K.H.

The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering.

Loading...
Thumbnail Image
Item

Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers

2008, Pietzsch, A., Föhlisch, A., Beye, M., Deppe, M., Hennies, F., Nagasono, M., Suljotil, E., Wurth, W., Gahl, C., Dörich, K., Melnikov, A.

We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.