Search Results

Now showing 1 - 2 of 2
  • Item
    General Time-Dependent Configuration-Interaction Singles II: The Atomic Case
    (Woodbury, NY : Inst., 2022-10-10) Carlström, Stefanos; Bertolino, Mattias; Dahlström, Jan Marcus; Patchkovskii, Serguei
    We present a specialization of the grid-based implementation of the time-dependent configuration-interaction singles described in the preceding paper [S. Carlström et al., preceding paper, Phys. Rev. A 106, 043104 (2022)]. to the case of spherical symmetry. We describe the intricate time propagator in detail and conclude with a few example calculations. Among these, of note are high-resolution photoelectron spectra in the vicinity of the Fano resonances in photoionization of neon and spin-polarized photoelectrons from xenon, in agreement with recent experiments.
  • Item
    Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy
    (Bristol : IOP, 2012) Passig, J.; Irsig, R.; Truong, N.X.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K.H.
    The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering.