Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Intrinsic modulus and strain coefficients in dilute composites with a Neo-Hookean elastic matrix

2022, Ivaneyko, Dmytro, Domurath, Jan, Heinrich, Gert, Saphiannikova, Marina

A finite element modelling of dilute elastomer composites based on a Neo-Hookean elastic matrix and rigid spherical particles embedded within the matrix was performed. In particular, the deformation field in vicinity of a sphere was simulated and numerical homogenization has been used to obtain the effective modulus of the composite μeff for different applied extension and compression ratios. At small deformations the well-known Smallwood result for the composite is reproduced: μeff=(1+[μ]φ)μ0 with the intrinsic modulus [μ]=2.500. Here φ is the volume fraction of particles and μ0 is the modulus of the matrix solid. However at larger deformations higher values of the intrinsic modulus [μ] are obtained, which increase quadratically with the applied true strain. The homogenization procedure allowed to extract the intrinsic strain coefficients which are mirrored around the undeformed state for principle extension and compression axes. Utilizing the simulation results, stress and strain modifications of the Neo-Hookean strain energy function for dilute composites are proposed.

Loading...
Thumbnail Image
Item

Corrector estimates for a thermo-diffusion model with weak thermal coupling

2016, Muntean, Adrian, Reichelt, Sina

The present work deals with the derivation of corrector estimates for the two-scale homogenization of a thermo-diffusion model with weak thermal coupling posed in a heterogeneous medium endowed with periodically arranged high-contrast microstructures. The terminology weak thermal coupling refers here to the variable scaling in terms of the small homogenization parameter " of the heat conduction diffusion interaction terms, while the high-contrast is thought particularly in terms of the heat conduction properties of the composite material. As main target, we justify the first-order terms of the multiscale asymptotic expansions in the presence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like effects. The contrasting heat conduction combined with cross coupling lead to the main mathematical difficulty in the system. Our approach relies on the method of periodic unfolding combined with -independent estimates for the thermal and concentration fields and for their coupled fluxes.

Loading...
Thumbnail Image
Item

Error estimates for elliptic equations with not exactly periodic coefficients

2016, Reichelt, Sina

This note is devoted to the derivation of quantitative estimates for linear elliptic equations with coefficients that are not exactly ε-periodic and the ellipticity constant may degenerate for vanishing ε. Here ε>0 denotes the ratio between the microscopic and the macroscopic length scale. It is shown that for degenerating and non-degenerating coefficients the error between the original solution and the effective solution is of order √ε. Therefore suitable test functions are constructed via the periodic unfolding method and a gradient folding operator making only minimal additional assumptions on the given data and the effective solution with respect to the macroscopic scale.

Loading...
Thumbnail Image
Item

Multiscale modeling of weakly compressible elastic materials in harmonic regime and applications to microscale structure estimation

2013, Caiazzo, Alfonso, Mura, Joaquín

This article is devoted to the modeling of elastic materials composed by an incompressible elastic matrix and small compressible gaseous inclusions, under a time harmonic excitation. In a biomedical context, this model describes the dynamics of a biological tissue (e.g. lung or liver) when wave analysis methods (such as Magnetic Resonance Elastography) are used to estimate tissue properties. Due to the multiscale nature of the problem, direct numerical simulations are prohibitive.We extend the homogenized model introduced in [Baffico, Grandmont, Maday, Osses, SIAM J. Mult. Mod. Sim., 7(1), 2008] to a time harmonic regime to describe the solid-gas mixture from a macroscopic point of view in terms of an effective elasticity tensor. Furthermore, we derive and validate numerically analytical approximations for the effective elastic coefficients in terms of macroscopic parameters. This simplified description is used to to set up an efficient variational approach for the estimation of the tissue porosity, using the mechanical response to external harmonic excitations.

Loading...
Thumbnail Image
Item

Prediction of Short Fiber Composite Properties by an Artificial Neural Network Trained on an RVE Database

2021, Breuer, Kevin, Stommel, Markus

In this study, an artificial neural network is designed and trained to predict the elastic properties of short fiber reinforced plastics. The results of finite element simulations of three-dimensional representative volume elements are used as a data basis for the neural network. The fiber volume fraction, fiber length, matrix-phase properties, and fiber orientation are varied so that the neural network can be used within a very wide range of parameters. A comparison of the predictions of the neural network with additional finite element simulations shows that the stiffnesses of short fiber reinforced plastics can be predicted very well by the neural network. The average prediction accuracy is equal or better than by a two-step homogenization using the classical method of Mori and Tanaka. Moreover, it is shown that the training of the neural network on an extended data set works well and that particularly calculation-intensive data points can be avoided without loss of prediction quality.

Loading...
Thumbnail Image
Item

Precompact probability spaces in applied stochastic homogenization

2021, Heida, Martin

We provide precompactness and metrizability of the probability space Ω for random measures and random coefficients such as they widely appear in stochastic homogenization and are typically given from data. We show that these properties are enough to implement the convenient two-scale formalism by Zhikov and Piatnitsky (2006). To further demonstrate the benefits of our approach we provide some useful trace and extension operators for Sobolev functions on Ω, which seem not known in literature. On the way we close some minor gaps in the Sobolev theory on Ω which seemingly have not been proven up to date.

Loading...
Thumbnail Image
Item

The dielectric constant of liquid electrolytes obtained from periodic homogenization theory

2018, Landstorfer, Manuel

The dielectric constant of an electrolytic solution is known to decrease with increasing salt concentration. This effect, frequently called dielectric decrement, is experimentally found for many salts and solvents and shows an almost linear decrease up to a certain salt concentration. However, the actual origin of this concentration dependence is yet unclear, and many different theoretical approaches investigate this effect. Here I present an investigation based on microscopic Maxwell equations and periodic homogenization theory. The microscopic perception of anions and cations forming a pseudo lattice in the liquid solution is exploited by multi-scale asymptotic expansions, where the inverse Avogadro number arises as small scaling parameter. This leads to a homogenized Poisson equation on the continuum scale with an effective or homogenized dielectric constant that accounts for microscopic field effects in the pseudo lattice. Incomplete dissociation is further considered at higher salt concentrations due to solvation effects. The numerically computed homogenized dielectric constant is then compared to experimental data of NaCl and shows a remarkable qualitative and quantitative agreement in the concentration range of (0 5)mol L.

Loading...
Thumbnail Image
Item

Statistical Analysis of Mechanical Stressing in Short Fiber Reinforced Composites by Means of Statistical and Representative Volume Elements

2021, Breuer, Kevin, Spickenheuer, Axel, Stommel, Markus

Analyzing representative volume elements with the finite element method is one method to calculate the local stress at the microscale of short fiber reinforced plastics. It can be shown with Monte-Carlo simulations that the stress distribution depends on the local arrangement of the fibers and is therefore unique for each fiber constellation. In this contribution the stress distribution and the effective composite properties are examined as a function of the considered volume of the representative volume elements. Moreover, the influence of locally varying fiber volume fraction is examined, using statistical volume elements. The results show that the average stress probability distribution is independent of the number of fibers and independent of local fluctuation of the fiber volume fraction. Furthermore, it is derived from the stress distributions that the statistical deviation of the effective composite properties should not be neglected in the case of injection molded components. A finite element analysis indicates that the macroscopic stresses and strains on component level are significantly influenced by local, statistical fluctuation of the composite properties.

Loading...
Thumbnail Image
Item

Homogenization of the nonlinear bending theory for plates

2013, Neukamm, Stefan, Olbermann, Heiner

We carry out the spatially periodic homogenization of Kirchhoff's plate theory. The derivation is rigorous in the sense of Gamma-convergence. In contrast to what one naturally would expect, our result shows that the limiting functional is not simply a quadratic functional of the second fundamental form of the deformed plate as it is the case in Kirchhoff's plate theory. It turns out that the limiting functional discriminates between whether the deformed plate is locally shaped like a "cylinder" or not. For the derivation we investigate the oscillatory behavior of sequences of second fundamental forms associated with isometric immersions of class W2,2, using two-scale convergence. This is a non-trivial task, since one has to treat two-scale convergence in connection with a nonlinear differential constraint.

Loading...
Thumbnail Image
Item

Stochastic homogenization on perforated domains II -- Application to nonlinear elasticity models

2021, Heida, Martin

Based on a recent work that exposed the lack of uniformly bounded W1,p → W1,p extension operators on randomly perforated domains, we study stochastic homogenization of nonlinear elasticity on such structures using instead the extension operators constructed in [11]. We thereby introduce two-scale convergence methods on such random domains under the intrinsic loss of regularity and prove some generally useful calculus theorems on the probability space Ω, e.g. abstract Gauss theorems.