Search Results

Now showing 1 - 4 of 4
  • Item
    Enhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier
    (Melville, NY : American Inst. of Physics, 2020) Piros, Eszter; Petzold, Stefan; Zintler, Alexander; Kaiser, Nico; Vogel, Tobias; Eilhardt, Robert; Wenger, Christian; Molina-Luna, Leopoldo; Alff, Lambert
    This work addresses the thermal stability of bipolar resistive switching in yttrium oxide-based resistive random access memory revealed through the temperature dependence of the DC switching behavior. The operation voltages, current levels, and charge transport mechanisms are investigated at 25 °C, 85 °C, and 125 °C, and show overall good temperature immunity. The set and reset voltages, as well as the device resistance in both the high and low resistive states, are found to scale inversely with increasing temperatures. The Schottky-barrier height was observed to increase from approximately 1.02 eV at 25 °C to approximately 1.35 eV at 125 °C, an uncommon behavior explained by interface phenomena. © 2020 Author(s).
  • Item
    Critical impacts of global warming on land ecosystems
    (München : European Geopyhsical Union, 2013) Ostberg, S.; Lucht, W.; Schaphoff, S.; Gerten, D.
    Globally increasing temperatures are likely to have impacts on terrestrial, aquatic and marine ecosystems that are difficult to manage. Quantifying impacts worldwide and systematically as a function of global warming is fundamental to substantiating the discussion on climate mitigation targets and adaptation planning. Here we present a macro-scale analysis of climate change impacts on terrestrial ecosystems based on newly developed sets of climate scenarios featuring a step-wise sampling of global mean temperature increase between 1.5 and 5 K by 2100. These are processed by a biogeochemical model (LPJmL) to derive an aggregated metric of simultaneous biogeochemical and structural shifts in land surface properties which we interpret as a proxy for the risk of shifts and possibly disruptions in ecosystems. Our results show a substantial risk of climate change to transform terrestrial ecosystems profoundly. Nearly no area of the world is free from such risk, unless strong mitigation limits global warming to around 2 degrees above preindustrial level. Even then, our simulations for most climate models agree that up to one-fifth of the land surface may experience at least moderate ecosystem change, primarily at high latitudes and high altitudes. If countries fulfil their current emissions reduction pledges, resulting in roughly 3.5 K of warming, this area expands to cover half the land surface, including the majority of tropical forests and savannas and the boreal zone. Due to differences in regional patterns of climate change, the area potentially at risk of major ecosystem change considering all climate models is up to 2.5 times as large as for a single model.
  • Item
    Thermophilic films and fibers from photo cross-linkable UCST-type polymers
    (Cambridge : RSC Publ., 2015) Liu, Fangyao; Jiang, Shaohua; Ionov, Leonid; Agarwal, Seema
    Photo cross-linkable thermoresponsive polymers of UCST-type based on acrylamide (AAm) and acrylonitrile (AN) useful for preparing thermophilic hydrogel films and fibers are presented. The polymers prepared via free radical and reversible addition fragmentation chain-transfer (RAFT) polymerization methods using N-(4-benzoylphenyl)acrylamide (BPAm) as photo cross-linkable comonomers provided highly stable UCST-type phase transition in water reproducible without hysteresis for many cycles. The cloud point could be manipulated by varying the acrylonitrile amount in the feed. Chemically cross-linked hydrogel films and nanofibers (average diameter 500 nm) were successfully prepared from the ter-copolymers by solution casting and electrospinning followed by UV irradiation. These hydrogels showed a continuous positive volume transition behavior in water with increasing temperature that was utilized for the design of microactuators.
  • Item
    Static Dielectric Constant of β-Ga2O3 Perpendicular to the Principal Planes (100), (010), and (001)
    (Pennington, NJ : ECS, 2019) Fiedler, A.; Schewski, R.; Galazka, Z.; Irmscher, K.
    The relative static dielectric constant ℇr of β-Ga2O3 perpendicular to the planes (100), (010), and (001) is determined in the temperature range from 25 K to 500 K by measuring the AC capacitance of correspondingly oriented plate capacitor structures using test frequencies of up to 1 MHz. This allows a direct quantification of the static dielectric constant and a unique direction assignment of the obtained values. At room temperature, ℇr perpendicular to the planes (100), (010), and (001) amounts to 10.2 ± 0.2, 10.87 ± 0.08, and 12.4 ± 0.4, respectively, which clearly evidence the anisotropy expected for β-Ga2O3 due to its monoclinic crystal structure. An increase of ℇr by about 0.5 with increasing temperature from 25 K to 450 K was found for all orientations. Our ℇr data resolve the inconsistencies in the previously available literature data with regard to absolute values and their directional assignment and therefore provide a reliable basis for the simulation and design of devices. © The Author(s) 2019.