Search Results

Now showing 1 - 2 of 2
  • Item
    Integrated sensitive on-chip ion field effect transistors based on wrinkled ingaas nanomembranes
    (New York, NY [u.a.] : Springer, 2011) Harazim, S.M.; Feng, P.; Sanchez, S.; Deneke, C.; Mei, Y.; Schmidt, O.G.
    Self-organized wrinkling of pre-strained nanomembranes into nanochannels is used to fabricate a fully integrated nanofluidic device for the development of ion field effect transistors (IFETs). Constrained by the structure and shape of the membrane, the deterministic wrinkling process leads to a versatile variation of channel types such as straight two-way channels, three-way branched channels, or even four-way intersection channels. The fabrication of straight channels is well controllable and offers the opportunity to integrate multiple IFET devices into a single chip. Thus, several IFETs are fabricated on a single chip using a III-V semiconductor substrate to control the ion separation and to measure the ion current of a diluted potassium chloride electrolyte solution.
  • Item
    A novel patch micro electrode array for sensing ionic membrane currents
    (Amsterdam [u.a.] : Elsevier, 2011) Aryasomayajula, A.; Perike, S.; Hensel, R.; Posseckardt, J.; Gerlach, G.; Funk, R.H.W.
    Ionic membrane currents play an important role during regeneration of nerve cells, embryonic development and wound healing processes. Measuring the intracellular ion currents across the cell membrane is important in understanding the cellular functions related to the ion activities. A novel patch micro electrode array (p-MEA) for measuring the ionic membrane currents without poisoning the cells due to emitting metal ions is described in this paper. Results on biocompatibility of the device are presented. We discuss the fabrication and working principle of p-MEA.