Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Enhancing Virtual Ontology Based Access over Tabular Data with Morph-CSV

2020, Chaves-Fraga, David, Ruckhaus, Edna, Priyatna, Freddy, Vidal, Maria-Esther, Corchio, Oscar

Ontology-Based Data Access (OBDA) has traditionally focused on providing a unified view of heterogeneous datasets, either by materializing integrated data into RDF or by performing on-the fly querying via SPARQL query translation. In the specific case of tabular datasets represented as several CSV or Excel files, query translation approaches have been applied by considering each source as a single table that can be loaded into a relational database management system (RDBMS). Nevertheless, constraints over these tables are not represented; thus, neither consistency among attributes nor indexes over tables are enforced. As a consequence, efficiency of the SPARQL-to-SQL translation process may be affected, as well as the completeness of the answers produced during the evaluation of the generated SQL query. Our work is focused on applying implicit constraints on the OBDA query translation process over tabular data. We propose Morph-CSV, a framework for querying tabular data that exploits information from typical OBDA inputs (e.g., mappings, queries) to enforce constraints that can be used together with any SPARQL-to-SQL OBDA engine. Morph-CSV relies on both a constraint component and a set of constraint operators. For a given set of constraints, the operators are applied to each type of constraint with the aim of enhancing query completeness and performance. We evaluate Morph-CSV in several domains: e-commerce with the BSBM benchmark; transportation with a benchmark using the GTFS dataset from the Madrid subway; and biology with a use case extracted from the Bio2RDF project. We compare and report the performance of two SPARQL-to-SQL OBDA engines, without and with the incorporation of MorphCSV. The observed results suggest that Morph-CSV is able to speed up the total query execution time by up to two orders of magnitude, while it is able to produce all the query answers.

Loading...
Thumbnail Image
Item

Towards Customizable Chart Visualizations of Tabular Data Using Knowledge Graphs

2020, Wiens, Vitalis, Stocker, Markus, Auer, Sören, Ishita, Emi, Pang, Natalie Lee San, Zhou, Lihong

Scientific articles are typically published as PDF documents, thus rendering the extraction and analysis of results a cumbersome, error-prone, and often manual effort. New initiatives, such as ORKG, focus on transforming the content and results of scientific articles into structured, machine-readable representations using Semantic Web technologies. In this article, we focus on tabular data of scientific articles, which provide an organized and compressed representation of information. However, chart visualizations can additionally facilitate their comprehension. We present an approach that employs a human-in-the-loop paradigm during the data acquisition phase to define additional semantics for tabular data. The additional semantics guide the creation of chart visualizations for meaningful representations of tabular data. Our approach organizes tabular data into different information groups which are analyzed for the selection of suitable visualizations. The set of suitable visualizations serves as a user-driven selection of visual representations. Additionally, customization for visual representations provides the means for facilitating the understanding and sense-making of information.

Loading...
Thumbnail Image
Item

When humans and machines collaborate: Cross-lingual Label Editing in Wikidata

2019, Kaffee, L.-A., Endris, K.M., Simperl, E.

The quality and maintainability of a knowledge graph are determined by the process in which it is created. There are different approaches to such processes; extraction or conversion of available data in the web (automated extraction of knowledge such as DBpedia from Wikipedia), community-created knowledge graphs, often by a group of experts, and hybrid approaches where humans maintain the knowledge graph alongside bots. We focus in this work on the hybrid approach of human edited knowledge graphs supported by automated tools. In particular, we analyse the editing of natural language data, i.e. labels. Labels are the entry point for humans to understand the information, and therefore need to be carefully maintained. We take a step toward the understanding of collaborative editing of humans and automated tools across languages in a knowledge graph. We use Wikidata as it has a large and active community of humans and bots working together covering over 300 languages. In this work, we analyse the different editor groups and how they interact with the different language data to understand the provenance of the current label data.

Loading...
Thumbnail Image
Item

Interaction Network Analysis Using Semantic Similarity Based on Translation Embeddings

2019, Manzoor Bajwa, Awais, Collarana, Diego, Vidal, Maria-Esther, Acosta, Maribel, Cudré-Mauroux, Philippe, Maleshkova, Maria, Pellegrini, Tassilo, Sack, Harald, Sure-Vetter, York

Biomedical knowledge graphs such as STITCH, SIDER, and Drugbank provide the basis for the discovery of associations between biomedical entities, e.g., interactions between drugs and targets. Link prediction is a paramount task and represents a building block for supporting knowledge discovery. Although several approaches have been proposed for effectively predicting links, the role of semantics has not been studied in depth. In this work, we tackle the problem of discovering interactions between drugs and targets, and propose SimTransE, a machine learning-based approach that solves this problem effectively. SimTransE relies on translating embeddings to model drug-target interactions and values of similarity across them. Grounded on the vectorial representation of drug-target interactions, SimTransE is able to discover novel drug-target interactions. We empirically study SimTransE using state-of-the-art benchmarks and approaches. Experimental results suggest that SimTransE is competitive with the state of the art, representing, thus, an effective alternative for knowledge discovery in the biomedical domain.