Search Results

Now showing 1 - 2 of 2
  • Item
    Cryogenic characterization of a LiAlO 2 crystal and new results on spin-dependent dark matter interactions with ordinary matter: CRESST Collaboration
    (Berlin ; Heidelberg : Springer, 2020) Abdelhameed, A.H.; Angloher, G.; Bauer, P.; Bento, A.; Bertoldo, E.; Breier, R.; Bucci, C.; Canonica, L.; D’Addabbo, A.; Di Lorenzo, S.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Fichtinger, S.; Fuchs, D.; Fuss, A.; Ghete, V.M.; Garai, A.; Gorla, P.; Hauff, D.; Ješkovský, M.; Jochum, J.; Kaizer, J.; Kaznacheeva, M.; Kinast, A.; Kluck, H.; Kraus, H.; Langenkämper, A.; Mancuso, M.; Mokina, V.; Mondragon, E.; Olmi, M.; Ortmann, T.; Pagliarone, C.; Palušová, V.; Pattavina, L.; Petricca, F.; Potzel, W.; Povinec, P.; Pröbst, F.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schmiedmayer, D.; Schönert, S.; Schwertner, C.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Usherov, I.; Wagner, F.; Willers, M.; Zema, V.; Zeman, J.; Brützam, M.; Ganschow, S.
    In this work, a first cryogenic characterization of a scintillating LiAlO 2 single crystal is presented. The results achieved show that this material holds great potential as a target for direct dark matter search experiments. Three different detector modules obtained from one crystal grown at the Leibniz-Institut für Kristallzüchtung (IKZ) have been tested to study different properties at cryogenic temperatures. Firstly, two 2.8 g twin crystals were used to build different detector modules which were operated in an above-ground laboratory at the Max Planck Institute for Physics (MPP) in Munich, Germany. The first detector module was used to study the scintillation properties of LiAlO 2 at cryogenic temperatures. The second achieved an energy threshold of (213.02 ± 1.48) eV which allows setting a competitive limit on the spin-dependent dark matter particle-proton scattering cross section for dark matter particle masses between 350MeV/c2 and 1.50GeV/c2. Secondly, a detector module with a 373 g LiAlO 2 crystal as the main absorber was tested in an underground facility at the Laboratori Nazionali del Gran Sasso (LNGS): from this measurement it was possible to determine the radiopurity of the crystal and study the feasibility of using this material as a neutron flux monitor for low-background experiments. © 2020, The Author(s).
  • Item
    Terahertz emission from lithium doped silicon under continuous wave interband optical excitation
    (Bristol : IOP Publ., 2015) Andrianov, A.V.; Zakhar'in, A.O.; Zhukavin, R.K.; Shastin, V.N.; Abrosimov, N.V.
    We report on experimental observation and study of terahertz emission from lithium doped silicon crystals under continuous wave band-to-band optical excitation. It is shown that radiative transitions of electrons from 2P excited states of lithium donor to the 1S(A1) donor ground state prevail in the emission spectrum. The terahertz emission occurs due to capture of nonequilibrium electrons to charged donors, which in turn are generated in the crystal as a result of impurity assisted electron-hole recombination. Besides the intracentre radiative transitions the terahertz emission spectrum exhibits also features at about 12.7 and 15.27 meV, which could be related to intraexciton transitions and transitions from the continuum to the free exciton ground state.