Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Rolled-up tubes and cantilevers by releasing SrRuO 3-Pr 0.7Ca 0.3MnO 3 nanomembranes

2011, Deneke, C., Wild, E., Boldyreva, K., Baunack, S., Cendula, P., Mönch, I., Simon, M., Malachias, A., Dörr, K., Schmidt, O.G.

Three-dimensional micro-objects are fabricated by the controlled release of inherently strained SrRuO 3/Pr 0.7Ca 0.3MnO 3/SrRuO 3 nanometer-sized trilayers from SrTiO 3 (001) substrates. Freestanding cantilevers and rolled-up microtubes with a diameter of 6 to 8 μm are demonstrated. The etching behavior of the SrRuO3 film is investigated, and a selectivity of 1:9,100 with respect to the SrTiO3 substrate is found. The initial and final strain states of the rolled-up oxide layers are studied by X-ray diffraction on an ensemble of tubes. Relaxation of the sandwiched Pr0.7Ca0.3MnO3 layer towards its bulk lattice parameter is observed as the major driving force for the roll-up of the trilayers. Finally, μ-diffraction experiments reveal that a single object can represent the ensemble proving a good homogeneity of the rolled-up tubes.

Loading...
Thumbnail Image
Item

Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes

2012, Rodriguez, R.D., Sheremet, E., Thurmer, D.J., Lehmann, D., Gordan, O.D., Seidel, F., Milekhin, A., Schmidt, O.G., Hietschold, M., Zahn, D.R.T.

Large arrays of multifunctional rolled-up semiconductors can be mass-produced with precisely controlled size and composition, making them of great technological interest for micro- and nano-scale device fabrication. The microtube behavior at different temperatures is a key factor towards further engineering their functionality, as well as for characterizing strain, defects, and temperature-dependent properties of the structures. For this purpose, we probe optical phonons of GaAs/InGaAs rolled-up microtubes using Raman spectroscopy on defect-rich (faulty) and defect-free microtubes. The microtubes are fabricated by selectively etching an AlAs sacrificial layer in order to release the strained InGaAs/GaAs bilayer, all grown by molecular beam epitaxy. Pristine microtubes show homogeneity of the GaAs and InGaAs peak positions and intensities along the tube, which indicates a defect-free rolling up process, while for a cone-like microtube, a downward shift of the GaAs LO phonon peak along the cone is observed. Formation of other type of defects, including partially unfolded microtubes, can also be related to a high Raman intensity of the TO phonon in GaAs. We argue that the appearance of the TO phonon mode is a consequence of further relaxation of the selection rules due to the defects on the tubes, which makes this phonon useful for failure detection/prediction in such rolled up systems. In order to systematically characterize the temperature stability of the rolled up microtubes, Raman spectra were acquired as a function of sample temperature up to 300°C. The reversibility of the changes in the Raman spectra of the tubes within this temperature range is demonstrated.