Search Results

Now showing 1 - 7 of 7
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Design of a core-shell catalyst : an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins
    (Cambridge : RSC, 2020) Tan, Li; Wang, Fan; Zhang, Peipe; Suzuki, Yuichi; Wu, Yingquan; Chen, Jiangang; Yang, Guohui; Tsubaki, Noritatsu
    An elegant catalyst is designedviathe encapsulation of metallic oxide Zn-Cr inside of zeolite SAPO34 as a core-shell structure (Zn-Cr@SAPO) to realize the coupling of methanol-synthesis and methanol-to-olefin reactions. It can not only break through the limitation of the Anderson-Schulz-Flory distribution but can also overcome the disadvantages of physical mixture catalysts, such as excessive CO2formation. The confinement effect, hierarchical structure and extremely short distance between the two active components result in the Zn-Cr@SAPO capsule catalyst having better mass transfer and diffusion with a boosted synergistic effect. Due to the difference between the adsorption energies of the Zn-Cr metallic oxide/SAPO zeolite physical mixture and capsule catalysts, the produced water and light olefins are easily removed from the Zn-Cr@SAPO capsule catalyst after formation, suppressing the side reactions. The light olefin space time yield (STY) of the capsule catalyst is more than twice that of the typical physical mixture catalyst. The designed capsule catalyst has superior potential for scale-up in industrial applications while simultaneously extending the capabilities of hybrid catalysts for other tandem catalysis reactions through this strategy. © The Royal Society of Chemistry 2020.
  • Item
    An efficient two-polymer binder for high-performance silicon nanoparticle-based lithium-ion batteries: A systematic case study with commercial polyacrylic acid and polyvinyl butyral polymers
    (Pennington, NJ : Electrochemical Society Inc., 2019) Urbanski, A.; Omar, A.; Guo, J.; Janke, A.; Reuter, U.; Malanin, M.; Schmidt, F.; Jehnichen, D.; Holzschuh, M.; Simon, F.; Eichhorn, K.-J.; Giebeler, L.; Uhlmann, P.
    Silicon is one of the most promising anode materials for high energy density lithium ion batteries (LIBs) due to its high theoretical capacity and natural abundance. Unfortunately, significant challenges arise due to the large volume change of silicon upon lithiation/delithiation which inhibit its broad commercialization. An advanced binder can, in principle, reversibly buffer the volume change, and maintain strong adhesion toward various components as well as the current collector. In this work, we present the first report on the applicability of polyvinyl butyral (PVB) polymer as a binder component for silicon nanoparticles-based LIBs. Characteristic binder properties of commercial PVB and polyacrylic acid (PAA) polymers are compared. The work focuses on polymer mixtures of PVB polymers with PAA, for an improved binder composition which incorporates their individual advantages. Different ratios of polymers are systematically studied to understand the effect of particular polymer chains, functional groups and mass fractions, on the electrochemical performance. We demonstrate a high-performance polymer mixture which exhibits good binder-particle interaction and strong adhesion to Cu-foil. PAA/PVB-based electrode with a Si loading of ∼1 mg/cm2 tested between 0.01 and 1.2 V vs. Li/Li+ demonstrate specific capacities as high as 2170 mAh/g after the first hundred cycles. © The Author(s) 2019.
  • Item
    Ruthenium Complexes with PNN Pincer Ligands Based on (Chiral) Pyrrolidines: Synthesis, Structure, and Dynamic Stereochemistry
    (Washington, DC : ACS Publ., 2020) Bootsma, Johan; Guo, Beibei; de Vries, Johannes G.; Otten, Edwin
    We report the synthesis of lutidine-based PNN type metal pincer complexes, using achiral (pyrrolidine) as well as chiral ((R,R)-2,5-dimethylpyrrolidine and (R)-2-methylpyrrolidine) substituents at the N side arm of the pincer ligand. With the six-coordinate saturated Ru pincers (PNN)Ru(H)(CO)(Cl), which have an aromatic pyridine ligand backbone, as the starting materials, treatment with strong base (KOtBu) generated the corresponding dearomatized pincer complexes (PNN')Ru(H)(CO). Spectroscopic, crystallographic, and computational studies demonstrate that the C-centered chirality from the chiral pyrrolidine group exerts a small but non-negligible influence on the preferred stereochemistry at Ru (and N in the case of (R)-2-methylpyrrolidine) that is reflected in the equilibrium distribution of diastereomers of these Ru complexes in solution. Our data show that the N- and Ru-based stereogenic centers in this class of compounds are stereochemically labile and the mechanisms for epimerization are discussed. Inversion at the Ru center in the dearomatized complexes is proposed to occur via a rearomatized Ru(0) intermediate in which the Ru-bound hydride is transferred to the ligand. Support for this comes from the spectroscopic characterization of a closely related Ru(0) species that is obtained by reaction with CO. Testing these catalysts in enantioselective oxa-Michael addition or transfer hydrogenation led to racemic products, while a low ee (8%) was observed in the hydrogenation of 4-fluoroacetophenone. The lack of appreciable enantioinduction with these catalysts is ascribed to the kinetic lability of the Ru stereocenter, which results in the formation of equilibrium mixtures in which several diastereomers of the catalyst are present. Copyright © 2020 American Chemical Society.
  • Item
    Scalable synthesis and polymerisation of a β-angelica lactone derived monomer
    (Cambridge : RSC, 2020) Dell'Acqua, Andrea; Stadler, Bernhard M.; Kirchhecker, Sarah; Tin, Sergey; de Vries, Johannes G.
    Bio-based levulinic acid is easily ring-closed to α-angelica lactone (α-AL). α-AL can be isomerized to the conjugated β-AL under the influence of base, but since this is an equilibrium mixture it is very hard to devise a scalable process that would give pure β-AL. This problem was circumvented by distilling the equilibrium mixture to obtain a 90 : 10 mixture of β-and α-AL in 88% yield. This mixture was used for Diels-Alder reactions on 3 terpenes and on cyclopentadiene in up to 100 g scale. The latter DA adduct was subjected to a ROMP reaction catalysed by the Grubbs II catalyst. The resulting polymer has some similarities to poly-norbornene but is more polar. The polymer can be processed into films with very good transparency. © The Royal Society of Chemistry.
  • Item
    Influence of diluted acid mixtures on selective etching of MHz- and kHz-fs-laser inscribed structures in YAG
    (Washington, DC : OSA, 2021) Hasse, Kore; Kip, Detlef; Kränkel, Christian
    We show that the inscription velocity of fs-laser written structures in YAG crystals can be significantly improved by the use of MHz repetition rates for the writing process. Using a 10 MHz inscription laser, record high writing velocities up to 100 mm/s are achieved. Also, the selective etching process is accelerated using a diluted mixture of 22% H3PO4 and 24% H2SO4. The diluted mixture enables selective etching of up to 9.6 mm long, 1 µm wide and 18 µm high microchannels in 23 days. The etching parameter D of 11.2 µm2/s is a factor of 3 higher than previously reported and the selectivity is even increased by an order of magnitude.
  • Item
    Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications
    (Cambridge : RSC, 2020) Kumar, Labeesh; Singh, Sajan; Horechyy, Andriy; Formanek, Petr; Hübner, René; Albrecht, Victoria; Weißpflog, Janek; Schwarz, Simona; Puneet, Puhup; Nandan, Bhanu
    Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance. This journal is © The Royal Society of Chemistry.