6 results
Search Results
Now showing 1 - 6 of 6
- ItemHow activated carbon improves the performance of non-thermal plasma removing methyl ethyl ketone from a gas stream([Amsterdam] : Elsevier B.V., 2021) Schmidt, Michael; Kettlitz, Manfred; Kolb, Juergen F.The combination of non-thermal plasma (NTP), operated at room temperature and at atmospheric pressure in air and in combination with activated carbon filters offers a more efficient removal of VOCs from gas streams than each individual method alone. Efficiencies, synergies and mechanisms of this combination were investigated by means of comprehensive quantitative Fourier transform infrared spectroscopy analysis. Therefore, dry and wet synthetic air containing about 90 ppm of methyl ethyl ketone (MEK) were treated with non-thermal plasma (NTP) and an intentionally undersized activated carbon (AC) filter, separately and in combination. As a result, removal of about 50 % was achieved for NTP or AC alone but a removal close to 95 % was found for the combination. Ozone, generated by the NTP, was reduced by 55 % with the AC-filter. For the operation of the NTP with humid air, a decomposition of the pollutant on AC was observed even after the plasma was switched off.
- ItemPlasma-oxidative degradation of polyphenolics – Influence of non-thermal gas discharges with respect to fresh produce processing(Prague : ČSAZV, 2009) Grzegorzewski, F.; Schlüter, O.; Ehlbeck, J.; Weltmann, K.-D.; Geyer, M.; Kroh, L.W.; Rohn, S.Non-thermal plasma treatment is a promising technology to enhance the shelf-life of fresh or minimaly processed food. An efficient inactivation of microorganisms comes along with a moderate heating of the treated surface. To elucidate the influence of highly reactive plasma-immanent species on the stability and chemical behaviour of phytochemicals, several polyphenolics were exposed to an atmospheric pressure plasma jet (APPJ). The selected flavonoids are ideal target compounds due to their antioxidant activity protecting cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals and peroxynitrite. Reactions were carried out at various radio-frequency voltages, using Ar as a feeding gas. Degradation was followed by reversed-phase high-performance liquid chromatography.
- ItemPlasma-treated air and water-assessment of synergistic antimicrobial effects for sanitation of food processing surfaces and environment(Basel : MDPI, 2019) Schnabel, Uta; Handorf, Oliver; Yarova, Kateryna; Zessin, Björn; Zechlin, Susann; Sydow, Diana; Zellmer, Elke; Stachowiak, Jörg; Andrasch, Mathias; Below, Harald; Ehlbeck, JörgThe synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5–50 s) and the treatment time of the specimens with PPA/PTW (1–5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes—gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.
- ItemNon-thermal plasma treatment induces MAPK signaling in human monocytes(Berlin : de Gruyter, 2014) Bundscherer, Lena; Nagel, Stefanie; Hasse, Sybille; Tresp, Helena; Wende, Kristian; Walther, Reinhard; Reuter, Stephan; Weltmann, Klaus-Dieter; Masur, Kai; Lindequist, UlrikeThe application of non-thermal atmospheric pressure plasma raises a hope for the new wound healing strategies. Next to its antibacterial effect it is known to stimulate skin cells. However, monocytes are also needed for the complex process of a wound healing. This study investigates the impact of plasma on the intracellular signaling events in the primary human monocytes. The proliferative MEK-ERK (MAPK/ERK kinase-extracellular signal-regulated kinase) pathway was activated by short plasma treatment times. In contrast, an induction of the apoptotic JNK (c-Jun N-terminal kinase) cascade as well as activation of caspase 3 were observed after long plasma exposure. These findings indicate that monocytes can be differentially stimulated by plasma treatment and may contribute to the proper wound recovery.
- ItemStudies on the Electrical Behaviour and Removal of Toluene with a Dielectric Barrier Discharge(Berlin : de Gruyter, 2014) Schmidt, Michael; Schiorlin, Milko; Brandenburg, RonnyThis contribution attempts to establish an easy-to-apply non-thermal plasma reactor for efficient toluene removal. Derived from the already established knowledge of the so called Dielectric Barrier Discharge (DBD) Stack Reactor a new model reactor was used in this work. The DBD Stack Reactor is a multi-elements reactor but in this work only one stack element was used to investigate the efficiency and efficacy of toluene removal. In case of reliable results the scalability process for industrial application is already well known. Therefore, laboratory experiments were conducted in dry and wet synthetic air with an admixture of 50 ppm toluene. Along with the toluene removal process the electrical behaviour of the discharge configuration was investigated. It was found that the electrical capacitance of the dielectric barrier changes with variations of the operating voltage. This could be due to the changes in the area of the dielectric barrier which is covered with plasma. Additionally, it was found that the power input into the plasma, at a fixed operating voltage, is proportional to the frequency, which is in agreement with the literature.Regarding the decomposition process, the total removal of toluene was achieved at specific input energy densities of 55 J L-1 under dry conditions and 110 J L-1 under wet conditions. The toluene removal was accompanied by the production of nitric acid (dry conditions) and formic acid (wet conditions). The latter suggested a combination of the plasma reactor with a water scrubber as an approach for total removal of pollutant molecules.
- ItemThe role of HNO2 in the generation of plasma-activated water by air transient spark discharge(Basel : MDPI, 2021) Janda, Mário; Hensel, Karol; Tóth, Peter; Hassan, Mostafa E.; Machala, ZdenkoTransient spark (TS), a DC-driven self-pulsing discharge generating a highly reactive atmospheric pressure air plasma, was employed as a rich source of NOx. In dry air, TS generates high concentrations of NO and NO2, increasing approximately linearly with increasing input energy density (Ed), reaching 1200 and 180 ppm of NO and NO2, at Ed = 400 J/L, respectively. In humid air, the concentration of NO2 decreased down to 120 ppm in favor of HNO2 that reached approximately 100 ppm at Ed = 400 J/L. The advantage of TS is its capability of simultaneous generation of the plasma and the formation of microdroplets by the electrospray (ES) of water directly inside the discharge zone. The TS discharge can thus efficiently generate plasma-activated water (PAW) with high concentration of H2O2 −(aq), NO2 −(aq) and NO3 −(aq), because water microdroplets significantly increase the plasma-liquid interaction interface. This enables a fast transfer of species such as NO, NO2, HNO2 from the gas into water. In this study, we compare TS with water ES in a one stage system and TS operated in dry or humid air followed by water ES in a two-stage system, and show that gaseous HNO2, rather than NO or NO2, plays a major role in the formation of NO2 −(aq) in PAW that reached the concentration up to 2.7 mM.