Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

The use of matrix-specific calibrations for oxygen in analytical glow discharge spectrometry

2014, Gonzalez-Gago, C., Smid, P., Hofmann, T., Venzago, C., Hoffmann, V., Gruner, W.

The performance of glow discharge optical emission spectroscopy and mass spectrometry for oxygen determination is investigated using a set of new conductive samples containing oxygen in the percent range in three different matrices (Al, Mg, and Cu) prepared by a sintering process. The sputtering rate corrected calibrations obtained at standard conditions for the 4 mm anode (700 V, 20 mA) in GD-OES are matrix independent for Mg and Al but not for Cu. The importance of a "blue shifted" line of oxygen at 130.22 nm (first reported by Köster) for quantitative analyses by GD-OES is confirmed. Matrix-specific calibrations for oxygen in GD-MS are presented. Two source concepts - fast flow (ELEMENT GD) and low gas flow (VG9000) - are evaluated obtaining higher sensitivity with the static flow source. Additional experiments using Ar-He mixtures or μs pulsed GD are carried out in ELEMENT GD aiming to improve the oxygen sensitivity.

Loading...
Thumbnail Image
Item

On the interaction of a microwave excited oxygen plasma with a jet of precursor material for deposition applications

2019, Methling, R., Hempel, F., Baeva, M., Trautvetter, T., Baierl, H., Foest, R.

A plasma source based on a microwave discharge at atmospheric pressure is used to produce an oxygen plasma torch. A liquid precursor material is evaporated and injected into the torch through a nozzle, causing oxidization and deposition of silica at a nearby quartz substrate. The temperature generated inside the plasma source and in the plume, in the region of treatment, and at the substrate surface are key parameters, which are needed for process description and optimization of plasma-chemical reactions. Optical emission spectroscopy and thermography were applied to observe and characterize the jet behavior and composition. The experimental results are compared with self-consistent modeling.

Loading...
Thumbnail Image
Item

Ablation-dominated arcs in CO2 atmosphere—Part I: Temperature determination near current zero

2020, Methling, Ralf, Khakpour, Alireza, Götte, Nicolas, Uhrlandt, Dirk

Wall-stabilized arcs dominated by nozzle–ablation are key elements of self-blast circuit breakers. In the present study, high-current arcs were investigated using a model circuit breaker (MCB) in CO2 as a gas alternative to SF6 (gas sulfur hexafluoride) and in addition a long polytetrafluoroethylene nozzle under ambient conditions for stronger ablation. The assets of different methods for optical investigation were demonstrated, e.g., high-speed imaging with channel filters and optical emission spectroscopy. Particularly the phase near current zero (CZ) crossing was studied in two steps. In the first step using high-speed cameras, radial temperature profiles have been determined until 0.4 ms before CZ in the nozzle. Broad temperature profiles with a maximum of 9400 K have been obtained from analysis of fluorine lines. In the second step, the spectroscopic sensitivity was increased using an intensified CCD camera, allowing single-shot measurements until few microseconds before CZ in the MCB. Ionic carbon and atomic oxygen emission were analyzed using absolute intensities and normal maximum. The arc was constricted and the maximum temperature decreased from > 18,000 K at 0.3 ms to about 11,000 K at 0.010 ms before CZ. The arc plasma needs about 0.5–1.0 ms after both the ignition phase and the current zero crossing to be completely dominated by the ablated wall material. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Glow discharge optical emission spectrometry for quantitative depth profiling of CIGS thin-films

2019, Kodalle, T., Greiner, D., Brackmann, V., Prietzel, K., Scheu, A., Bertram, T., Reyes-Figueroa, P., Unold, T., Abou-Ras, D., Schlatmann, R., Kaufmann, C.A., Hoffmann, V.

Determining elemental distributions dependent on the thickness of a sample is of utmost importance for process optimization in different fields e.g. from quality control in the steel industry to controlling doping profiles in semiconductor labs. Glow discharge optical emission spectrometry (GD-OES) is a widely used tool for fast measurements of depth profiles. In order to be able to draw profound conclusions from GD-OES profiles, one has to optimize the measurement conditions for the given application as well as to ensure the suitability of the used emission lines. Furthermore a quantification algorithm has to be implemented to convert the measured properties (intensity of the emission lines versus sputtering time) to more useful parameters, e.g. the molar fractions versus sample depth (depth profiles). In this contribution a typical optimization procedure of the sputtering parameters is adapted to the case of polycrystalline Cu(In,Ga)(S,Se)2 thin films, which are used as absorber layers in solar cell devices, for the first time. All emission lines used are shown to be suitable for the quantification of the depth profiles and a quantification routine based on the assumption of constant emission yield is used. The accuracy of this quantification method is demonstrated on the basis of several examples. The bandgap energy profile of the compound semiconductor, as determined by the elemental distributions, is compared to optical measurements. The depth profiles of Na-the main dopant in these compounds-are correlated with measurements of the open-circuit voltage of the corresponding devices, and the quantification of the sample depth is validated by comparison with profilometry and X-ray fluorescence measurements.

Loading...
Thumbnail Image
Item

Ablation-dominated arcs in CO2 atmosphere—Part II: Molecule emission and absorption

2020, Methling, Ralf, Götte, Nicolas, Uhrlandt, Dirk

Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high-current arcs as key elements of self-blast circuit breakers. The arc in a model circuit breaker (MCB) in CO2 with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as a background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C2 Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.