Search Results

Now showing 1 - 2 of 2
  • Item
    The regime of Aerosol Optical Depth and Ångström exponent over Central and South Asia
    (Les Ulis : EDP Sciences, 2019) Floutsi, Athina Avgousta; Korras Carraca, Marios Bruno; Matsoukas, Christos; Hatzianastassiou, Nikos; Biskos, George
    Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS-Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to-0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to-0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835. © 2019 The Authors, published by EDP Sciences.
  • Item
    Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective
    (Amsterdam : Elsevier, 2014) Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P.A.; Pirovano, G.; Pérez, J.L.; San José, R.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S.
    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and compared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30–35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core–shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.