Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices

2015, Alexander Schmidt, Markus, Argyros, Alexander, Sorin, Fabien

The field of hybrid optical fibers is one of the most active research areas in current fiber optics and has the vision of integrating sophisticated materials inside fibers, which are not traditionally used in fiber optics. Novel in-fiber devices with unique properties have been developed, opening up new directions for fiber optics in fields of critical interest in modern research, such as biophotonics, environmental science, optoelectronics, metamaterials, remote sensing, medicine, or quantum optics. Here the recent progress in the field of hybrid optical fibers is reviewed from an application perspective, focusing on fiber-integrated devices enabled by including novel materials inside polymer and glass fibers. The topics discussed range from nanowire-based plasmonics and hyperlenses, to integrated semiconductor devices such as optoelectronic detectors, and intense light generation unlocked by highly nonlinear hybrid waveguides.

Loading...
Thumbnail Image
Item

Subwavelength population density gratings in resonant medium created by few-cycle pulses

2017, Arkhipov, R.M., Arkhipov, M.V., Pakhomov, A.V., Babushkin, I., Demircan, A., Morgner, U., Rosanov, N.N.

We consider theoretically recently proposed a new possibility of creation, erasing and ultrafast control of population density grating. Such grating can be created in resonant medium when ultrashort pulses with duration smaller than relaxation times in the resonant medium (coherent light matter interactions) propagate without overlapping in this medium. Possible applications in the ultrafast optics such as optical switcher and laser beam deflector are discussed.

Loading...
Thumbnail Image
Item

Towards a life-time-limited 8-octave-infrared photoconductive germanium detector

2015, Pavlov, S.G., Deßmann, N., Pohl, A., Abrosimov, N.V., Mittendorff, M., Winnerl, S., Zhukavin, R.K, Tsyplenkov, V.V., Shengurov, D.V., Shastin, V.N., Hübers, H.-W.

Ultrafast, ultra-broad-band photoconductive detector based on heavily doped and highly compensated germanium has been demonstrated. Such a material demonstrates optical sensitivity in the more than 8 octaves, in the infrared, from about 2 mm to about 8 μm. The spectral sensitivity peaks up between 2 THz and 2.5 THz and is slowly reduced towards lower and higher frequencies. The life times of free electrons/holes measured by a pump-probe technique approach a few tenths of picoseconds and remain almost independent on the optical input intensity and on the temperature of a detector in the operation range. During operation, a detector is cooled down to liquid helium temperature but has been approved to detect, with a reduced sensitivity, up to liquid nitrogen temperature. The response time is shorter than 200 ps that is significantly faster than previously reported times.

Loading...
Thumbnail Image
Item

Modulating the luminance of organic light-emitting diodes: Via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

2020, Ligorio, Giovanni, Cotella, Giovanni F., Bonasera, Aurelio, Zorn Morales, Nicolas, Carnicella, Giuseppe, Kobin, Björn, Wang, Qiankun, Koch, Norbert, Hecht, Stefan, List-Kratochvil, Emil J.W., Cacialli, Franco

Self-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits. © 2020 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Kinetic Control over Self-Assembly of Semiconductor Nanoplatelets

2020, Momper, R., Zhang, H., Chen, S., Halim, H., Johannes, E., Yordanov, S., Braga, D., Blülle, B., Doblas, D., Kraus, T., Kraus, T., Bonn, M., Wang, H.I., Riedinger, A.

Semiconductor nanoplatelets exhibit spectrally pure, directional fluorescence. To make polarized light emission accessible and the charge transport effective, nanoplatelets have to be collectively oriented in the solid state. We discovered that the collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. Our method avoids insulating additives such as surfactants, making it ideally suited for optoelectronics. The monolayer films with controlled nanoplatelets orientation (edge-up or face-down) exhibit long-range ordering of transition dipole moments and macroscopically polarized light emission. Furthermore, we unveil that the substantial in-plane electronic coupling between nanoplatelets enables charge transport through a single nanoplatelets monolayer, with an efficiency that strongly depends on the orientation of the nanoplatelets. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.

Loading...
Thumbnail Image
Item

Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance

2023, Gallop, Nathaniel. P., Maslennikov, Dmitry R., Mondal, Navendu, Goetz, Katelyn P., Dai, Zhenbang, Schankler, Aaron M., Sung, Woongmo, Nihonyanagi, Satoshi, Tahara, Tahei, Bodnarchuk, Maryna I., Kovalenko, Maksym V., Vaynzof, Yana, Rappe, Andrew M., Bakulin, Artem A.

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.

Loading...
Thumbnail Image
Item

The new ultra high-speed all-optical coherent streak-camera

2015, Arkhipov, R.M., Arkhipov, M.V., Egorov, V.S., Chekhonin, I.A., Chekhonin, M.A., Bagayev, S.N.

In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape.

Loading...
Thumbnail Image
Item

A general approach for all-visible-light switching of diarylethenes through triplet sensitization using semiconducting nanocrystals

2022, Hou, Lili, Larsson, Wera, Hecht, Stefan, Andréasson, Joakim, Albinsson, Bo

Coupling semiconducting nanocrystals (NCs) with organic molecules provides an efficient route to generate and transfer triplet excitons. These excitons can be used to power photochemical transformations such as photoisomerization reactions using low energy radiation. Thus, it is desirable to develop a general approach that can efficiently be used to control photoswitches using all-visible-light aiming at future applications in life- and materials sciences. Here, we demonstrate a simple ‘cocktail’ strategy that can achieve all-visible-light switchable diarylethenes (DAEs) through triplet energy transfer from the hybrid of CdS NCs and phenanthrene-3-carboxylic acid, with high photoisomerization efficiency and improved fatigue resistance. The size-tunable excitation energies of CdS NCs make it possible to precisely match the clear spectral window of the relevant DAE photoswitch. We demonstrate reversible all-visible-light photoisomerization of a series of DAE derivatives both in the liquid and solid state, even in the presence of oxygen. Our general strategy is promising for fabrication of all-visible-light activated optoelectronic devices as well as memories, and should in principle be adaptable to photopharmacology.

Loading...
Thumbnail Image
Item

From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations

2021, O’Donovan, Michael, Chaudhuri, Debapriya, Streckenbach, Timo, Farrell, Patricio, Schulz, Stefan, Koprucki, Thomas

Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-quantum well systems.

Loading...
Thumbnail Image
Item

Terahertz emission from lithium doped silicon under continuous wave interband optical excitation

2015, Andrianov, A.V., Zakhar'in, A.O., Zhukavin, R.K., Shastin, V.N., Abrosimov, N.V.

We report on experimental observation and study of terahertz emission from lithium doped silicon crystals under continuous wave band-to-band optical excitation. It is shown that radiative transitions of electrons from 2P excited states of lithium donor to the 1S(A1) donor ground state prevail in the emission spectrum. The terahertz emission occurs due to capture of nonequilibrium electrons to charged donors, which in turn are generated in the crystal as a result of impurity assisted electron-hole recombination. Besides the intracentre radiative transitions the terahertz emission spectrum exhibits also features at about 12.7 and 15.27 meV, which could be related to intraexciton transitions and transitions from the continuum to the free exciton ground state.