Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Behavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment

2010, Wiese, R., Sushkov, V., Kersten, H., Ikkurthi, V.R., Schneider, R., Hippler, R.

The behavior of a single porous particle with a diameter of 250 μm levitating in a radiofrequency (RF) plasma under pulsed argon ion beam bombardment was investigated. The motion of the particle under the action of the ion beam was observed to be an oscillatory motion. The Fourier-analyzed motion is dominated by the excitation frequency of the pulsed ion beam and odd higher harmonics, which peak near the resonance frequency. The appearance of even harmonics is explained by a variation of the particles's charge depending on its position in the plasma sheath. The Fourier analysis also allows a discussion of neutral and ion forces. The particle's charge was derived and compared with theoretical estimates based on the orbital motion-limited (OML) model using also a numerical simulation of the RF discharge. The derived particle's charge is about 7-15 times larger than predicted by the theoretical models. This difference is attributed to the porous structure of the particle. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Direct imaging of nanoscale field-driven domain wall oscillations in Landau structures

2022, Singh, Balram, Ravishankar, Rachappa, Otálora, Jorge A., Soldatov, Ivan, Schäfer, Rudolf, Karnaushenko, Daniil, Neu, Volker, Schmidt, Oliver G.

Linear oscillatory motion of domain walls (DWs) in the kHz and MHz regime is crucial when realizing precise magnetic field sensors such as giant magnetoimpedance devices. Numerous magnetically active defects lead to pinning of the DWs during their motion, affecting the overall behavior. Thus, the direct monitoring of the domain wall's oscillatory behavior is an important step to comprehend the underlying micromagnetic processes and to improve the magnetoresistive performance of these devices. Here, we report an imaging approach to investigate such DW dynamics with nanoscale spatial resolution employing conventional table-top microscopy techniques. Time-averaged magnetic force microscopy and Kerr imaging methods are applied to quantify the DW oscillations in Ni81Fe19 rectangular structures with Landau domain configuration and are complemented by numeric micromagnetic simulations. We study the oscillation amplitude as a function of external magnetic field strength, frequency, magnetic structure size, thickness and anisotropy and understand the excited DW behavior as a forced damped harmonic oscillator with restoring force being influenced by the geometry, thickness, and anisotropy of the Ni81Fe19 structure. This approach offers new possibilities for the analysis of DW motion at elevated frequencies and at a spatial resolution of well below 100 nm in various branches of nanomagnetism.