Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Conformations of a Long Polymer in a Melt of Shorter Chains: Generalizations of the Flory Theorem

2015, Lang, Michael, Rubinstein, Michael, Sommer, Jens-Uwe

Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P–0.18 with decreasing degree of polymerization P of melt chains in the range of 1 < P < N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P–0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.

Loading...
Thumbnail Image
Item

Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation

2015, Matsidik, Rukiya, Komber, Hartmut, Luzio, Alessandro, Caironi, Mario, Sommer, Michael

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C–H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C–H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities μsat up to 3 cm2/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.

Loading...
Thumbnail Image
Item

Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP

2016, Vorobii, Mariia, Pop-Georgievski, Ognen, de los Santos Pereira, Andres, Kostina, Nina Yu., Jezorek, Ryan, Sedláková, Zdeňka, Percec, Virgil, Rodriguez-Emmenegger, Cesar

Photoinduced surface-initiated single electron transfer living radical polymerization (SET-LRP) is a versatile technique for the preparation of polymer brushes. The vast diversity of compatible functional groups, together with a high end-group fidelity that enables precise control of the architecture, makes this approach an effective tool for tuning the properties of surfaces. We report the application of photoinduced SET-LRP for the surface-initiated grafting of polymer brushes from a wide range of methacrylate monomers for the first time. The living character of the process was demonstrated by the linear evolution of the polymer brush thickness in time, the ability to reinitiate the polymerization for the preparation of well-defined block copolymers, and also by X-ray photoelectron spectroscopy depth profiling. The surface patterning with these brushes could be achieved simply by restricting the irradiated area. The ability of poly(methacrylate) brushes prepared in this way to prevent non-specific protein adsorption is also demonstrated, indicating the suitability of this procedure for advanced applications.

Loading...
Thumbnail Image
Item

Controlled electron-beam synthesis of transparent hydrogels for drug delivery applications

2019, Glass, Sarah, Kühnert, Mathias, Abel, Bernd, Schulze, Agnes

In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Additionally, they were transparent over a broader wavelength range. The dependence of the mechanical and optical properties of the hydrogels on the number of single differential and total irradiation doses was analyzed in detail. The hydrogels were prepared for usage as a drug delivery material with methylene blue as a drug model. In the first set of experiments, methylene blue was loaded reversibly after the hydrogel synthesis. Electron-beam-polymerized hydrogels incorporated twice as much methylene blue compared to the UV-polymerized gels. Furthermore, the release of the model drug was found to depend on the crosslinking degree of the hydrogels. In addition, electron-beam polymerization enabled the irreversible binding of the drug molecules if they were mixed with monomers before polymerization.

Loading...
Thumbnail Image
Item

Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings

2017, Buzzacchera, Irene, Vorobii, Mariia, Kostina, Nina Yu, de Los Santos Pereira, Andres, Riedel, Tomáš, Bruns, Michael, Ogieglo, Wojciech, Möller, Martin, Wilson, Christopher J., Rodriguez-Emmenegger, Cesar

Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

Loading...
Thumbnail Image
Item

Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization

2014, Gabler, C., Zietz, C., Göhler, R., Fritsche, A., Lindner, T., Haenle, M., Finke, B., Meichsner, J., Lenz, S., Frerich, B., Lüthen, F., Nebe, J.B., Bader, R.

By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

Loading...
Thumbnail Image
Item

High molecular weight mechanochromic spiropyran main chain copolymers via reproducible microwave-assisted Suzuki polycondensation

2015, Metzler, Lukas, Reichenbach, Thomas, Brügner, Oliver, Komber, Hartmut, Lombeck, Florian, Müllers, Stefan, Hanselmann, Ralf, Hillebrecht, Harald, Walter, Michael, Sommer, Michael

Suzuki–Miyaura polycondensation (SPC) is widely used to prepare a variety of copolymers for a broad range of applications. Although SPC protocols are often used in many instances, the limits of this method and issues of molecular weight reproducibility are not often looked at in detail. By using a spiropyran-based (SP) mechanochromic copolymer, we present an optimized protocol for the microwave-assisted synthesis of a mechanochromic, alternating copolymer P(SP-alt-C10) via SPC that allows the reproduction of molecular weight distributions. Several parameters such as microwave power, temperature, stoichiometry, and ligand are screened, leading to molecular weights up to Mw ∼ 174 kg mol−1. The process of optimization is guided by NMR end group analysis which shows that dehalogenation, oxidative deborylation and SP cleavage are the limiting factors that impede further increase of molar mass, while other classical side reactions such as protiodeborylation are not observed. Embossing films of P(SP-alt-C10) yields the colored merocyanine (MC) copolymer P(MC-alt-C10) that undergoes a thermally facilitated back reaction to P(SP-alt-C10). DFT suggests that the barrier of the SP → MC transition has two contributions, with the first one being related to the color change and the second one to internal bond reorganizations. The barrier height is 1.5 eV, which suggests that the ease of the thermally facilitated back reaction is either due to residual energy stored in the deformed polymer matrix, or arises from an MC isomer that is not in the thermodynamically most stable state.

Loading...
Thumbnail Image
Item

Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization

2019, Mergel, Olga, Schneider, Sabine, Tiwari, Rahul, Kühn, Philipp T., Keskin, Damla, Stuart, Marc C. A., Schöttner, Sebastian, de Kanter, Martinus, Noyong, Michael, Caumanns, Tobias, Mayer, Joachim, Janzen, Christoph, Simon, Ulrich, Gallei, Markus, Wöll, Dominik, van Rijn, Patrick, Plamper, Felix A.

Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Copolymerization of zinc-activated isoindigo- and naphthalene-diimide based monomers: an efficient route to low bandgap π-conjugated random copolymers with tunable properties

2016, Karpov, Yevhen, Maiti, Jatindranath, Tkachov, Roman, Beryozkina, Tetyana, Bakulev, Vasiliy, Liu, Wei, Komber, Hartmut, Lappan, Uwe, Al-Hussein, Mahmoud, Stamm, Manfred, Voit, Brigitte, Kiriy, Anton

The present work aims at the extension of the scope of a recently discovered polycondensation of AB-type anion-radical monomers. To this end, we investigate the polymerization of isoindigo-based monomer and its copolymerization with the naphthalenediimide-based monomer. Although polycondensations of parent naphthalenediimide- and perylenediimide-based monomers involve chain-growth mechanism, we found that the corresponding isoindigo-based monomer polymerizes in a step-growth manner under the same reaction conditions. In contrast to Stille, Suzuki and direct arylation polycondensations which require prolonged stirring at high temperatures, the polymerization approach we employed in this study proceeds fast at room temperature. It was found that near statistical copolymerization of isoindigo-based anion-radical monomers with corresponding naphtalenediimide-based monomers proceeds smoothly resulting in a library of copolymers with varying composition and properties depending on the ratio of the monomers.

Loading...
Thumbnail Image
Item

Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles

2019, Folini, Jenny, Huang, Chao-Hung, Anderson, James C., Meier, Wolfgang P., Gaitzsch, Jens

Responsive and biodegradable nanoparticles are essential for functional drug delivery systems. We herein report the first pH sensitive polyester from radical ring-opening polymerisation of novel amine-bearing cyclic ketene acetals (CKAs). The CKAs were synthesised via an intermediate carbonate and the resulting polyesters showed a pKa around pH 6. Together with an initial application in biodegradable nanoparticles, they open the pathway for a new generation of functional polyesters.