Search Results

Now showing 1 - 2 of 2
  • Item
    Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms
    (San Francisco, CA : Public Library of Science, 2013) Matthes, R.; Bender, C.; Schlüter, R.; Koban, I.; Bussiahn, R.; Reuter, S.; Lademann, J.; Weltmann, K.-D.; Kramer, A.
    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.
  • Item
    Argon Humidification Exacerbates Antimicrobial and Anti-MRSA kINPen Plasma Activity
    (Basel : MDPI, 2023) Clemen, Ramona; Singer, Debora; Skowski, Henry; Bekeschus, Sander
    Gas plasma is a medical technology with antimicrobial properties. Its main mode of action is oxidative damage via reactive species production. The clinical efficacy of gas plasma-reduced bacterial burden has been shown to be hampered in some cases. Since the reactive species profile produced by gas plasma jets, such as the kINPen used in this study, are thought to determine antimicrobial efficacy, we screened an array of feed gas settings in different types of bacteria. Antimicrobial analysis was performed by single-cell analysis using flow cytometry. We identified humidified feed gas to mediate significantly greater toxicity compared to dry argon and many other gas plasma conditions. The results were confirmed by inhibition zone analysis on gas-plasma-treated microbial lawns grown on agar plates. Our results may have vital implications for clinical wound management and potentially enhance antimicrobial efficacy of medical gas plasma therapy in patient treatment.