Search Results

Now showing 1 - 2 of 2
  • Item
    Amyloids: From molecular structure to mechanical properties
    (Amsterdam [u.a.] : Elsevier, 2013) Schleeger, M.; Vandenakker, C.C.; Deckert-Gaudig, T.; Deckert, V.; Velikov, K.P.; Koenderink, G.; Bonn, M.
    Many proteins of diverse sequence, structure and function self-assemble into morphologically similar fibrillar aggregates known as amyloids. Amyloids are remarkable polymers in several respects. First of all, amyloids can be formed from proteins with very different amino acid sequences; the common denominator is that the individual proteins constituting the amyloid fold predominantly into a β-sheet structure. Secondly, the formation of the fibril occurs through non-covalent interactions between primarily the β-sheets, causing the monomers to stack into fibrils. The fibrils are remarkably robust, considering that the monomers are bound non-covalently. Finally, a common characteristic of fibrils is their unbranched, straight, fiber-like structure arising from the intertwining of the multiple β-sheet filaments. These remarkably ordered and stable nanofibrils can be useful as building blocks for protein-based functional materials, but they are also implicated in severe neurodegenerative diseases. The overall aim of this article is to highlight recent efforts aimed at obtaining insights into amyloid proteins on different length scales. Starting from molecular information on amyloids, single fibril properties and mechanical properties of networks of fibrils are described. Specifically, we focus on the self-assembly of amyloid protein fibrils composed of peptides and denatured model proteins, as well as the influence of inhibitors of fibril formation. Additionally, we will demonstrate how the application of recently developed vibrational spectroscopic techniques has emerged as a powerful approach to gain spatially resolved information on the structure-function relation of amyloids. While spectroscopy provides information on local molecular conformations and protein secondary structure, information on the single fibril level has been developed by diverse microscopic techniques. The approaches to reveal basic mechanical properties of single fibrils like bending rigidity, shear modulus, ultimate tensile strength and fracture behavior are illustrated. Lastly, mechanics of networks of amyloid fibrils, typically forming viscoelastic gels are outlined, with a focus on (micro-) rheological properties. The resulting fundamental insights are essential for the rational design of novel edible and biodegradable protein-based polymers, but also to devise therapeutic strategies to combat amyloid assembly and accumulation during pathogenic disorders.
  • Item
    Merging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
    (Weinheim : Wiley-VCH Verlag, 2020) Dietrich K.; Zilk M.; Steglich M.; Siefke T.; Hübner U.; Pertsch T.; Rockstuhl C.; Tünnermann A.; Kley E.-B.
    Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim