Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

2016, Stiller, M., Barzola-Quiquia, J., Esquinazi, P., Spemann, D., Meijer, J., Lorenz, M., Grundmann, M.

The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

Loading...
Thumbnail Image
Item

Ultrafast structural changes in SrTiO3 due to a superconducting phase transition in a YBa2Cu3O7 top layer

2010, Lübcke, A., Zamponi, F., Loetzsch, R., Kämpfer, T., Uschmann, I., Große, V., Schmidl, F., Köttig, T., Thürk, M., Schwoerer, H., Förster, E., Seidel, P., Sauerbrey, R.

We investigate the structural response of SrTiO3 when Cooper pairs are broken in an epitaxially grown YBa2Cu3O 7 top layer due to both heating and optical excitation. The crystal structure is investigated by static, temperaturedependent and time-resolved x-ray diffraction. In the static case, a large strain field in SrTiO3 is formed in the proximity of the onset of the superconducting phase in the top layer, suggesting a relationship between both effects. For the time-dependent studies, we likewise find a large fraction of the probed volume of the SrTiO3 substrate strained if the top layer is superconducting. Upon optical breaking of Cooper pairs, the observed width of the rocking curve is reduced and its position is slightly shifted towards smaller angles. The dynamical theory of x-ray diffraction is used to model the measured rocking curves. We find that the thickness of the strained layer is reduced by about 200 nm on a sub-ps to ps timescale, but the strain value at the interface between SrTiO3 and YBa2Cu3O7 remains unaffected. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Rolled-up tubes and cantilevers by releasing SrRuO 3-Pr 0.7Ca 0.3MnO 3 nanomembranes

2011, Deneke, C., Wild, E., Boldyreva, K., Baunack, S., Cendula, P., Mönch, I., Simon, M., Malachias, A., Dörr, K., Schmidt, O.G.

Three-dimensional micro-objects are fabricated by the controlled release of inherently strained SrRuO 3/Pr 0.7Ca 0.3MnO 3/SrRuO 3 nanometer-sized trilayers from SrTiO 3 (001) substrates. Freestanding cantilevers and rolled-up microtubes with a diameter of 6 to 8 μm are demonstrated. The etching behavior of the SrRuO3 film is investigated, and a selectivity of 1:9,100 with respect to the SrTiO3 substrate is found. The initial and final strain states of the rolled-up oxide layers are studied by X-ray diffraction on an ensemble of tubes. Relaxation of the sandwiched Pr0.7Ca0.3MnO3 layer towards its bulk lattice parameter is observed as the major driving force for the roll-up of the trilayers. Finally, μ-diffraction experiments reveal that a single object can represent the ensemble proving a good homogeneity of the rolled-up tubes.