Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

A Knowledge Graph for Industry 4.0

2020, Bader, Sebastian R., Grangel-Gonzalez, Irlan, Nanjappa, Priyanka, Vidal, Maria-Esther, Maleshkova, Maria, Harth, Andreas, Kirrane, Sabrina, Ngonga Ngomo, Axel-Cyrille, Paulheim, Heiko, Rula, Anisa, Gentile, Anna Lisa, Haase, Peter, Cochez, Michael

One of the most crucial tasks for today’s knowledge workers is to get and retain a thorough overview on the latest state of the art. Especially in dynamic and evolving domains, the amount of relevant sources is constantly increasing, updating and overruling previous methods and approaches. For instance, the digital transformation of manufacturing systems, called Industry 4.0, currently faces an overwhelming amount of standardization efforts and reference initiatives, resulting in a sophisticated information environment. We propose a structured dataset in the form of a semantically annotated knowledge graph for Industry 4.0 related standards, norms and reference frameworks. The graph provides a Linked Data-conform collection of annotated, classified reference guidelines supporting newcomers and experts alike in understanding how to implement Industry 4.0 systems. We illustrate the suitability of the graph for various use cases, its already existing applications, present the maintenance process and evaluate its quality.

Loading...
Thumbnail Image
Item

Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper

2020, Kang, D.J., Jüttke, Y., González-García, L., Escudero, A., Haft, M., Kraus, T.

Conductive inkjet printing with metal nanoparticles is irreversible because the particles are sintered into a continuous metal film. The resulting structures are difficult to remove or repair and prone to cracking. Here, a hybrid ink is used to obviate the sintering step and print interconnected particle networks that become highly conductive immediately after drying. It is shown that reversible conductive printing is possible on low-cost cardboard samples after applying standard paper industry coats that are adapted in terms of surface energy and porosity. The conductivity of the printed films approaches that of sintered standard inks on the same substrate, but the mobility of the hybrid particle film makes them less sensitive to cracks during bending and folding of the substrate. Damages that occur can be partially repaired by wetting the film such that particle mobility is increased and particles move to bridge insulating gaps in the film. It is demonstrated that the conductive material can be recovered from the cardboard at the end of its life time and be redispersed to recycle the particles and reuse them in conductive inks.

Loading...
Thumbnail Image
Item

Design and Evaluation of Radiation-Hardened Standard Cell Flip-Flops

2021, Schrape, Oliver, Andjelkovic, Marko, Breitenreiter, Anselm, Zeidler, Steffen, Balashov, Alexey, Krstic, Milos

Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flip-flop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP’s 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from ( 32.4 (MeV⋅cm2/mg) ) to ( 62.5 (MeV⋅cm2/mg) ), depending on the variant.

Loading...
Thumbnail Image
Item

Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)

2008, Thomas, M., Heczko, O., Buschbeck, J., Rößler, U.K., McCord, J., Scheerbaum, N., Schultz, L., Fähler, S.

Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.