Search Results

Now showing 1 - 9 of 9
  • Item
    Enhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier
    (Melville, NY : American Inst. of Physics, 2020) Piros, Eszter; Petzold, Stefan; Zintler, Alexander; Kaiser, Nico; Vogel, Tobias; Eilhardt, Robert; Wenger, Christian; Molina-Luna, Leopoldo; Alff, Lambert
    This work addresses the thermal stability of bipolar resistive switching in yttrium oxide-based resistive random access memory revealed through the temperature dependence of the DC switching behavior. The operation voltages, current levels, and charge transport mechanisms are investigated at 25 °C, 85 °C, and 125 °C, and show overall good temperature immunity. The set and reset voltages, as well as the device resistance in both the high and low resistive states, are found to scale inversely with increasing temperatures. The Schottky-barrier height was observed to increase from approximately 1.02 eV at 25 °C to approximately 1.35 eV at 125 °C, an uncommon behavior explained by interface phenomena. © 2020 Author(s).
  • Item
    Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals
    (New York, NY : American Inst. of Physics, 2020) Boy, Johannes; Handwerg, Martin; Mitdank, Rüdiger; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the charge carrier density, mobility, and Seebeck coefficient of melt-grown, bulk ZnGa2O4 single crystals was measured between 10 K and 310 K. The electrical conductivity at room temperature is about σ = 286 S/cm due to a high electron concentration of n = 3.26 × 1019 cm−3 caused by unintentional doping. The mobility at room temperature is μ = 55 cm2/V s, whereas the scattering on ionized impurities limits the mobility to μ = 62 cm2/Vs for temperatures lower than 180 K. The Seebeck coefficient relative to aluminum at room temperature is SZnGa2O4−Al = (−125 ± 2) μV/K and shows a temperature dependence as expected for degenerate semiconductors. At low temperatures, around 60 K, we observed the maximum Seebeck coefficient due to the phonon drag effect. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Temperature dependence of the complex permittivity in microwave range of some industrial polymers
    (New York, NY : American Inst. of Physics, 2022) Porteanu, Horia-Eugen; Kaempf, Rudolf; Flisgen, Thomas; Heinrich, Wolfgang
    The microwave properties of a number of polymers common in industry are investigated. A cylindrical resonator in the TM012 mode is used. The cavity perturbation method and detailed COMSOL simulations are applied for extracting the complex permittivity as a function of temperature. The results are useful for the design of plastic processing tools by heating with electromagnetic fields. The intrinsic parameters of absorption are derived based on two exponential decays: polarization and Arrhenius dependence of the decay times on temperature.
  • Item
    Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing
    (München : European Geopyhsical Union, 2018) Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
    Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
  • Item
    Femtosecond spectroscopy in a nearly optimally doped Fe-based superconductors FeSe0.5Te0.5 and Ba(Fe 1-xCox)2As2/Fe thin film
    (Bristol : Institute of Physics Publishing, 2014) Bonavolontà, C.; Parlato, L.; De, Lisio, C.; Valentino, M.; Pepe, G.P.; Kazumasa, I.; Kurth, F.; Bellingeri, E.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Ummarino, G.A.; Laviano, F.
    Femtosecond spectroscopy has been used to investigate the quasi-particle relaxation times in nearly optimally doped Fe-based superconductors FeSe 0.5Te0.5 and optimally doped Ba-122 thin films growth on a Fe buffer layer. Experimental results concerning the temperature dependence of the relaxation time of such pnictides both in the superconducting state are now presented and discussed. Modelling the T-dependence of relaxation times an estimation of both electron-phonon constant and superconducting energy gap in the excitation spectrum of both Fe(Se,Te) and Ba-122 compounds is obtained.
  • Item
    Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture
    (College Park, Md. : APS, 2020) Slootman, Juliette; Waltz, Victoria; Yeh, C. Joshua; Baumann, Christoph; Göstl, Robert; Comtet, Jean; Creton, Costantino
    Elastomers are highly valued soft materials finding many applications in the engineering and biomedical fields for their ability to stretch reversibly to large deformations. Yet their maximum extensibility is limited by the occurrence of fracture, which is currently still poorly understood. Because of a lack of experimental evidence, current physical models of elastomer fracture describe the rate and temperature dependence of the fracture energy as being solely due to viscoelastic friction, with chemical bond scission at the crack tip assumed to remain constant. Here, by coupling new fluorogenic mechanochemistry with quantitative confocal microscopy mapping, we are able to quantitatively detect, with high spatial resolution and sensitivity, the scission of covalent bonds as ordinary elastomers fracture at different strain rates and temperatures. Our measurements reveal that, in simple networks, bond scission, far from being restricted to a constant level near the crack plane, can both be delocalized over up to hundreds of micrometers and increase by a factor of 100, depending on the temperature and stretch rate. These observations, permitted by the high fluorescence and stability of the mechanophore, point to an intricate coupling between strain-rate-dependent viscous dissipation and strain-dependent irreversible network scission. These findings paint an entirely novel picture of fracture in soft materials, where energy dissipated by covalent bond scission accounts for a much larger fraction of the total fracture energy than previously believed. Our results pioneer the sensitive, quantitative, and spatially resolved detection of bond scission to assess material damage in a variety of soft materials and their applications. © 2020 authors. Published by the American Physical Society.
  • Item
    Semimetal to semiconductor transition in Bi/TiO2 core/shell nanowires
    (Cambridge : Royal Society of Chemistry, 2021) Kockert, M.; Mitdank, R.; Moon, H.; Kim, J.; Mogilatenko, A.; Moosavi, S.H.; Kroener, M.; Woias, P.; Lee, W.; Fischer, S.F.
    We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO2) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO2 core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO2 shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation.
  • Item
    Temperature dependence of the Seebeck coefficient of epitaxial β -Ga2O3 thin films
    (Melville, NY : AIP Publ., 2019) Boy, Johannes; Handwerg, Martin; Ahrling, Robin; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the Seebeck coefficient of homoepitaxial metal organic vapor phase grown, silicon doped β-Ga 2 O 3 thin films was measured relative to aluminum. For room temperature, we found the relative Seebeck coefficient of Sβ-Ga2O3-Al=(-300±20) μV/K. At high bath temperatures T > 240 K, the scattering is determined by electron-phonon-interaction. At lower bath temperatures between T = 100 K and T = 300 K, an increase in the magnitude of the Seebeck coefficient is explained in the frame of Stratton's formula. The influence of different scattering mechanisms on the magnitude of the Seebeck coefficient is discussed and compared with Hall measurement results. © 2019 Author(s).
  • Item
    Huge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films
    (Melville, NY : American Inst. of Physics, 2019) Von Helden, L.; Bogula, L.; Janolin, P.-E.; Hanke, M.; Breuer, T.; Schmidbauer, M.; Ganschow, S.; Schwarzkopf, J.
    We present a study in which ferroelectric phase transition temperatures in epitaxial KxNa1-xNbO3 films are altered systematically by choosing different (110)-oriented rare-earth scandate substrates and by variation of the potassium to sodium ratio. Our results prove the capability to continuously shift the ferroelectric-to-ferroelectric transition from the monoclinic MC to orthorhombic c-phase by about 400 °C via the application of anisotropic compressive strain. The phase transition was investigated in detail by monitoring the temperature dependence of ferroelectric domain patterns using piezoresponse force microscopy and upon analyzing structural changes by means of high resolution X-ray diffraction including X-ray reciprocal space mapping. Moreover, the temperature evolution of the effective piezoelectric coefficient d33,f was determined using double beam laser interferometry, which exhibits a significant dependence on the particular ferroelectric phase. © 2019 Author(s).