Search Results

Now showing 1 - 2 of 2
  • Item
    Accessibility and Personalization in OpenCourseWare : An Inclusive Development Approach
    (Piscataway, NJ : IEEE, 2020) Elias, Mirette; Ruckhaus, Edna; Draffan, E.A.; James, Abi; Suárez-Figueroa, Mari Carmen; Lohmann, Steffen; Khiat, Abderrahmane; Auer, Sören; Chang, Maiga; Sampson, Demetrios G.; Huang, Ronghuai; Hooshyar, Danial; Chen, Nian-Shing; Kinshuk; Pedaste, Margus
    OpenCourseWare (OCW) has become a desirable source for sharing free educational resources which means there will always be users with differing needs. It is therefore the responsibility of OCW platform developers to consider accessibility as one of their prioritized requirements to ensure ease of use for all, including those with disabilities. However, the main challenge when creating an accessible platform is the ability to address all the different types of barriers that might affect those with a wide range of physical, sensory and cognitive impairments. This article discusses accessibility and personalization strategies and their realisation in the SlideWiki platform, in order to facilitate the development of accessible OCW. Previously, accessibility was seen as a complementary feature that can be tackled in the implementation phase. However, a meaningful integration of accessibility features requires thoughtful consideration during all project phases with active involvement of related stakeholders. The evaluation results and lessons learned from the SlideWiki development process have the potential to assist in the development of other systems that aim for an inclusive approach. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
  • Item
    Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys
    (Bristol : IOP, 2012) Jakob, A.M.; Müller, M.; Rauschenbach, B.; Mayr, S.G.
    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed.