Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses

2018, Schneider, Michael, Günther, Christian M., Pfau, Bastian, Capotondi, Flavio, Manfredda, Michele, Zangrando, Marco, Mahne, Nicola, Raimondi, Lorenzo, Pedersoli, Emanuele, Naumenko, Denys, Eisebitt, Stefan

Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.

Loading...
Thumbnail Image
Item

X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor

2011, Hrauda, N., Zhang, J., Wintersberger, E., Etzelstorfer, T., Mandl, B., Stangl, J., Carbone, D., Holý, V., Jovanović, V., Biasotto, C., Nanver, L.K., Moers, J., Grützmacher, D., Bauer, G.

For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.