Search Results

Now showing 1 - 10 of 25
  • Item
    Local difference measures between complex networks for dynamical system model evaluation
    (San Francisco, CA : Public Library of Science (PLoS), 2015) Lange, S.; Donges, J.F.; Volkholz, J.; Kurths, J.
  • Item
    Abrupt transitions in time series with uncertainties
    (London : Nature Publishing Group, 2018) Goswami, B.; Boers, N.; Rheinwalt, A.; Marwan, N.; Heitzig, J.; Breitenbach, S.F.M.; Kurths, J.
    Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.
  • Item
    When optimization for governing human-environment tipping elements is neither sustainable nor safe
    (London : Nature Publishing Group, 2018) Barfuss, W.; Donges, J.F.; Lade, S.J.; Kurths, J.
    Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.
  • Item
    MIS-11 duration key to disappearance of the Greenland ice sheet
    (London : Nature Publishing Group, 2017) Robinson, A.; Alvarez-Solas, J.; Calov, R.; Ganopolski, A.; Montoya, M.
    Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ∼7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.
  • Item
    The plant phenological online database (PPODB): An online database for long-term phenological data
    (Heidelberg : Springer Verlag, 2013) Dierenbach, J.; Badeck, F.-W.; Schaber, J.
    We present an online database that provides unrestricted and free access to over 16 million plant phenological observations from over 8,000 stations in Central Europe between the years 1880 and 2009. Unique features are (1) a flexible and unrestricted access to a full-fledged database, allowing for a wide range of individual queries and data retrieval, (2) historical data for Germany before 1951 ranging back to 1880, and (3) more than 480 curated long-term time series covering more than 100 years for individual phenological phases and plants combined over Natural Regions in Germany. Time series for single stations or Natural Regions can be accessed through a user-friendly graphical geo-referenced interface. The joint databases made available with the plant phenological database PPODB render accessible an important data source for further analyses of long-term changes in phenology. The database can be accessed via www.ppodb.de.
  • Item
    Reply to Burgess et al: Catastrophic climate risks are neglected, plausible, and safe to study
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
  • Item
    WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies
    (Katlenburg-Lindau : Copernics Publications, 2020) Cucchi, Marco; Weedon, Graham P.; Amici, Alessandro; Bellouin, Nicolas; Lange, Stefan; Müller Schmied, Hannes; Hersbach, Hans; Buontempo, Carlo
    The WFDE5 dataset has been generated using the WATCH Forcing Data (WFD) methodology applied to surface meteorological variables from the ERA5 reanalysis. The WFDEI dataset had previously been generated by applying the WFD methodology to ERA-Interim. The WFDE5 is provided at 0.5 spatial resolution but has higher temporal resolution (hourly) compared to WFDEI (3-hourly). It also has higher spatial variability since it was generated by aggregation of the higher-resolution ERA5 rather than by interpolation of the lower-resolution ERA-Interim data. Evaluation against meteorological observations at 13 globally distributed FLUXNET2015 sites shows that, on average, WFDE5 has lower mean absolute error and higher correlation than WFDEI for all variables. Bias-adjusted monthly precipitation totals of WFDE5 result in more plausible global hydrological water balance components when analysed in an uncalibrated hydrological model (WaterGAP) than with the use of raw ERA5 data for model forcing. The dataset, which can be downloaded from https://doi.org/10.24381/cds.20d54e34 (C3S, 2020b), is distributed by the Copernicus Climate Change Service (C3S) through its Climate Data Store (CDS, C3S, 2020a) and currently spans from the start of January 1979 to the end of 2018. The dataset has been produced using a number of CDS Toolbox applications, whose source code is available with the data - allowing users to regenerate part of the dataset or apply the same approach to other data. Future updates are expected spanning from 1950 to the most recent year. A sample of the complete dataset, which covers the whole of the year 2016, is accessible without registration to the CDS at https://doi.org/10.21957/935p-cj60 (Cucchi et al., 2020). © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Assessing inter-sectoral climate change risks: The role of ISIMIP
    (Bristol : IOP Publishing, 2017) Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P.O.; Schewe, Jacob; van Vuuren, Detlef; Warszawski, Lila
    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
  • Item
    Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios
    (Bristol : IOP Publishing, 2015) Wiebe, Keith; Lotze-Campen, Hermann; Sands, Ronald; Tabeau, Andrzej; van der Mensbrugghe, Dominique; Biewald, Anne; Bodirsky, Benjamin; Islam, Shahnila; Kavallari, Aikaterini; Mason-D'Croz, Daniel; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; van Meijl, Hans; Willenbockel, Dirk
    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables.
  • Item
    Simulating the Earth system response to negative emissions
    (Bristol : IOP Publishing, 2016) Jones, C.D.; Ciais, P.; Davis, S.J.; Friedlingstein, P.; Gasser, T.; Peters, G.P.; Rogelj, J.; van Vuuren, D.P.; Canadell, J.G.; Cowie, A.; Jackson, R.B.; Jonas, M.; Kriegler, E.; Littleton, E.; Lowe, J.A.; Milne, J.; Shrestha, G.; Smith, P.; Torvanger, A.; Wiltshire, A.
    Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fraction may change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 ± 0.9 and 1.1 ± 0.3 GtC yr−1 respectively for the second half of the 21st century and to −0.4 ± 0.4 and 0.1 ± 0.2 GtC yr−1 respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.