Search Results

Now showing 1 - 2 of 2
  • Item
    Pseudo-chemotaxis of active Brownian particles competing for food
    (San Francisco, California, US : PLOS, 2020) Merlitz, Holger; Vuijk, Hidde D.; Wittmann, René; Sharma, Abhinav; Sommer, Jens-Uwe
    Active Brownian particles (ABPs) are physical models for motility in simple life forms and easily studied in simulations. An open question is to what extent an increase of activity by a gradient of fuel, or food in living systems, results in an evolutionary advantage of actively moving systems such as ABPs over non-motile systems, which rely on thermal diffusion only. It is an established fact that within confined systems in a stationary state, the activity of ABPs generates density profiles that are enhanced in regions of low activity, which is thus referred to as ‘anti-chemotaxis’. This would suggest that a rather complex sensoric subsystem and information processing is a precondition to recognize and navigate towards a food source. We demonstrate in this work that in non-stationary setups, for instance as a result of short bursts of fuel/food, ABPs do in fact exhibit chemotactic behavior. In direct competition with inactive, but otherwise identical Brownian particles (BPs), the ABPs are shown to fetch a larger amount of food. We discuss this result based on simple physical arguments. From the biological perspective, the ability of primitive entities to move in direct response to the available amount of external energy would, even in absence of any sensoric devices, encompass an evolutionary advantage.
  • Item
    Discrete logistic branching populations and the canonical diffusion and the canonical diffusion of adaptive dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Champagnat, Nicolas; Lambert, Amaury
    The biological theory of adaptive dynamics proposes a description of the long-time evolution of an asexual population, based on the assumptions of large population, rare mutations and small mutation steps, that lead to a deterministic ODE, called `canonical equation of adaptive dynamics'. However, in order to include the effect of genetic drift in this description, we have to apply a limit of weak selection to a finite stochastically fluctuating discrete population subject to competition in the logistic branching fashion. We start with the study of the particular case of two competing subpopulations (resident and mutant) and seek explicit first-order formulae for the probability of fixation of the mutant, also interpreted as the mutant's fitness, in the vicinity of neutrality. In particular, the first-order term is a linear combination of products of functions of the initial mutant frequency times functions of the initial total population size, called invasibility coefficients (fertility, defence, aggressiveness, isolation, survival). Then we apply a limit of rare mutations to a population subject to mutation, birth and competition where the number of coexisting types may fluctuate, while keeping the population size finite. This leads to a jump process ...