Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Sc3CH@C80: selective 13C enrichment of the central carbon atom

2016, Junghans, Katrin, Rosenkranz, Marco, Popov, Alexey A.

Sc3CH@C80 is synthesized and characterized by 1H, 13C, and 45Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. 13C satellites in the 1H NMR spectrum enabled indirect determination of the 13C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the 13C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage 13C distribution in mechanistic studies employing either 13CH4 or 13C powder to enrich Sc3CH@C80 with 13C.

Loading...
Thumbnail Image
Item

A crystalline anionic complex of scandium nitride endometallofullerene: Experimental observation of single-bonded (Sc3N@Ih-C80−)2 dimers

2016, Konarev, Dmitri V., Zorina, Leokadiya V., Khasanov, Salavat S., Popov, Alexey A., Otsuka, Akihiro, Yamochi, Hideki, Saito, Gunzi, Lyubovskaya, Rimma N.

Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80˙− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers.

Loading...
Thumbnail Image
Item

Graphene transistors for real-time monitoring molecular self-assembly dynamics

2020, Gobbi, Marco, Galanti, Agostino, Stoeckel, Marc-Antoine, Zyska, Bjorn, Bonacchi, Sara, Hecht, Stefan, Samorì, Paolo

Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D. © 2020, The Author(s).