Search Results

Now showing 1 - 10 of 10
  • Item
    A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ahmed, Naveed; Barrenechea, Gabriel R.; Burman, Erik; Guzmán, Johnny; Linke, Alexander; Merdon, Christian
    Discretization of Navier--Stokes' equations using pressure-robust finite element methods is considered for the high Reynolds number regime. To counter oscillations due to dominating convection we add a stabilization based on a bulk term in the form of a residual-based least squares stabilization of the vorticity equation supplemented by a penalty term on (certain components of) the gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressureindependent error estimates in the linearized case, known as Oseen's problem. In fact, we prove an O(hk+1/2) error estimate in the L2-norm that is known to be the best that can be expected for this type of problem. Numerical examples are provided that, in addition to confirming the theoretical results, show that the present method compares favorably to the classical residual-based SUPG stabilization.
  • Item
    Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Lederer, Philip Lukas; Merdon, Christian
    This paper improves guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type result relates the errors of divergence-free primal and H(div)-conforming dual mixed methods (for the velocity gradient) with an equilibration constraint that needs special care when discretised. To relax the constraints on the primal and dual method, a more general result is derived that enables the use of a recently developed mass conserving mixed stress discretisation to design equilibrated fluxes that yield pressure-independent guaranteed upper bounds for any pressure-robust (but not necessarily divergence-free) primal discretisation. Moreover, a provably efficient local design of the equilibrated fluxes is presented that reduces the numerical costs of the error estimator. All theoretical findings are verified by numerical examples which also show that the efficiency indices of our novel guaranteed upper bounds for the velocity error are close to 1.
  • Item
    A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Apel, Thomas; Kempf, Volker; Linke, Alexander; Merdon, Christian
    Most classical finite element schemes for the (Navier--)Stokes equations are neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing term, using H(div)-conforming velocity reconstruction operators. This approach has so far only been analyzed on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the Crouzeix--Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the interpolation error on anisotropic elements for reconstruction operators of Raviart--Thomas and Brezzi--Douglas--Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the theoretical results in a 2D and a 3D test case.
  • Item
    Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Frerichs, Derk; Merdon, Christian
    Non divergence-free discretisations for the incompressible Stokes problem may suffer from a lack of pressure-robustness characterised by large discretisations errors due to irrotational forces in the momentum balance. This paper argues that also divergence-free virtual element methods (VEM) on polygonal meshes are not really pressure-robust as long as the right-hand side is not discretised in a careful manner. To be able to evaluate the right-hand side for the testfunctions, some explicit interpolation of the virtual testfunctions is needed that can be evaluated pointwise everywhere. The standard discretisation via an L2 -bestapproximation does not preserve the divergence and so destroys the orthogonality between divergence-free testfunctions and possibly eminent gradient forces in the right-hand side. To repair this orthogonality and restore pressure-robustness another divergence-preserving reconstruction is suggested based on Raviart--Thomas approximations on local subtriangulations of the polygons. All findings are proven theoretically and are demonstrated numerically in two dimensions. The construction is also interesting for hybrid high-order methods on polygonal or polyhedral meshes.
  • Item
    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Schroeder, Philipp W.; Lehrenfeld, Christoph; Linke, Alexander; Lube, Gerd
    Inf-sup stable FEM applied to time-dependent incompressible Navier-Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semirobustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on the essential regularity assumption which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semirobust estimates for pointwise divergence-free H1-conforming FEM (like Scott-Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based.
  • Item
    On really locking-free mixed finite element methods for the transient incompressible Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Ahmed, Naveed; Linke, Alexander; Merdon, Christian
    Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the divergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its velocity error converges with optimal order and is independent of the pressure and the smallness of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes equations, where besides the right hand side also the velocity time derivative requires an improved space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates are derived, which show beautiful robustness properties. Two numerical examples illustrate the superior accuracy of pressure-robust space discretizations in the case of small viscosities.
  • Item
    Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Lederer, Philip Lukas; Merdon, Christian; Schöberl, Joachim
    Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure-independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the NavierStokes equations. The novel error estimators only take the curl of the righthand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the TaylorHood and mini finite element methods.
  • Item
    Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Linke, Alexander; Merdon, Christian; Neilan, Michael; Neumann, Felix
    Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a non-standard discretization of the right hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressurerobust scheme with low regularity. The numerical analysis applies divergence-free H1-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a-priori error estimates will be presented for the (first order) nonconforming CrouzeixRaviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.
  • Item
    Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Linke, Alexander; Merdon, Christian
    Recently, it was understood how to repair a certain L2-orthogonality of discretely-divergence-free vector fields and gradient fields such that the velocity error of inf-sup stable discretizations for the incompressible Stokes equations becomes pressure-independent. These new pressure-robust Stokes discretizations deliver a small velocity error, whenever the continuous velocity field can be well approximated on a given grid. On the contrary, classical inf-sup stable Stokes discretizations can guarantee a small velocity error only, when both the velocity and the pressure field can be approximated well, simultaneously. In this contribution, pressure-robustness is extended to the time-dependent Navier-Stokes equations. In particular, steady and time-dependent potential flows are shown to build an entire class of benchmarks, where pressure-robust discretizations can outperform classical approaches significantly. Speedups will be explained by a new theoretical concept, the discrete Helmholtz projector of an inf-sup stable discretization. Moreover, different discrete nonlinear convection terms are discussed, and skew-symmetric pressure-robust discretizations are proposed.
  • Item
    Pressure-robustness in the context of optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Merdon, Christian; Wollner, Winnifried
    This paper studies the benefits of pressure-robust discretizations in the scope of optimal control of incompressible flows. Gradient forces that may appear in the data can have a negative impact on the accuracy of state and control and can only be correctly balanced if their L2-orthogonality onto discretely divergence-free test functions is restored. Perfectly orthogonal divergence-free discretizations or divergence-free reconstructions of these test functions do the trick and lead to much better analytic a priori estimates that are also validated in numerical examples.