Search Results

Now showing 1 - 4 of 4
  • Item
    Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma
    (Austin, Tex. : Landes Bioscience, 2015) Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
  • Item
    Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing
    (New York [u.a.] : Hindawi, 2015) Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian
    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.
  • Item
    Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes
    (New York, NY : Hindawi, 2013) Haertel, B.; Straßenburg, S.; Oehmigen, K.; Wende, K.; Von Woedtke, T.; Lindequist, U.
    Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.
  • Item
    A New CYP2E1 Inhibitor, 12-Imidazolyl-1-dodecanol, Represents a Potential Treatment for Hepatocellular Carcinoma
    ([Cairo] : Hindawi, 2021) Diesinger, Torsten; Lautwein, Alfred; Bergler, Sebastian; Buckert, Dominik; Renz, Christian; Dvorsky, Radovan; Buko, Vyacheslav; Kirko, Siarhei; Schneider, Edith; Kuchenbauer, Florian; Kumar, Mukesh; Günes, Cagatay; Genze, Felicitas; Büchele, Berthold; Simmet, Thomas; Haslbeck, Martin; Masur, Kai; Barth, Thomas; Müller-Enoch, Dieter; Wirth, Thomas; Haehner, Thomas; Granito, Alessandro
    Cytochrome P450 2E1 (CYP2E1) is a key target protein in the development of alcoholic and nonalcoholic fatty liver disease (FLD). The pathophysiological correlate is the massive production of reactive oxygen species. The role of CYP2E1 in the development of hepatocellular carcinoma (HCC), the final complication of FLD, remains controversial. Specifically, CYP2E1 has not yet been defined as a molecular target for HCC therapy. In addition, a CYP2E1-specific drug has not been developed. We have already shown that our newly developed CYP2E1 inhibitor 12-imidazolyl-1-dodecanol (I-ol) was therapeutically effective against alcoholic and nonalcoholic steatohepatitis. In this study, we investigated the effect of I-ol on HCC tumorigenesis and whether I-ol could serve as a possible treatment option for terminal-stage FLD. I-ol exerted a very highly significant antitumour effect against hepatocellular HepG2 cells. Cell viability was reduced in a dose-dependent manner, with only the highest doses causing a cytotoxic effect associated with caspase 3/7 activation. Comparable results were obtained for the model colorectal adenocarcinoma cell line, DLD-1, whose tumorigenesis is also associated with CYP2E1. Transcriptome analyses showed a clear effect of I-ol on apoptosis and cell-cycle regulation, with the increased expression of p27Kip1 being particularly noticeable. These observations were confirmed at the protein level for HepG2 and DLD-1 cells grafted on a chorioallantoic membrane. Cell-cycle analysis showed a complete loss of proliferating cells with a simultaneous increase in S-phase arrest beginning at a threshold dose of 30 μM. I-ol also reduced xenograft tumour growth in nude mice. This antitumour effect was not associated with tumour cachexia. I-ol was not toxic to healthy tissues or organs. This study demonstrates for the first time the therapeutic effect of the specific CYP2E1 inhibitor I-ol on the tumorigenesis of HCC. Our findings imply that I-ol can potentially be applied therapeutically on patients at the final stage of FLD. © 2021 Torsten Diesinger et al.