Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Strong solutions to nonlocal 2D Cahn-Hilliard-Navier-Stokes systems with nonconstant viscosity, degenerate mobility and singular potential

2016, Frigeri, Sergio, Gal, Ciprian G., Grasselli, Maurizio, Sprekels, Jürgen

We consider a nonlinear system which consists of the incompressible Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface model which describes the motion of an incompressible isothermal mixture of two (partially) immiscible fluids having the same density. We suppose that the viscosity depends smoothly on the order parameter as well as the mobility. Moreover, we assume that the mobility is degenerate at the pure phases and that the potential is singular (e.g. of logarithmic type). This system is endowed with no-slip boundary condition for the (average) velocity and homogeneous Neumann boundary condition for the chemical potential. Thus the total mass is conserved. In the two-dimensional case, this problem was already analyzed in some joint papers of the first three authors. However, in the present general case, only the existence of a global weak solution, the (conditional) weak-strong uniqueness and the existence of the global attractor were proven. Here we are able to establish the existence of a (unique) strong solution through an approximation procedure based on time discretization. As a consequence, we can prove suitable uniform estimates which allow us to show some smoothness of the global attractor. Finally, we discuss the existence of strong solutions for the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three dimensional case as well.

Loading...
Thumbnail Image
Item

Nearly cloaking the elastic wave fields

2014, Hu, Guanghui, Liu, Hongyu

In this work, we develop a general mathematical framework on regularized approximate cloaking of elastic waves governed by the Lamé system via the approach of transformation elastodynamics. Our study is rather comprehensive. We first provide a rigorous justification of the transformation elastodynamics. Based on the blow-up-a-point construction, elastic material tensors for a perfect cloak are derived and shown to possess singularities. In order to avoid the singular structure, we propose to regularize the blow-up-a-point construction to be the blow-up-a-small-region construction. However, it is shown that without incorporating a suitable lossy layer, the regularized construction would fail due to resonant inclusions. In order to defeat the failure of the lossless construction, a properly designed lossy layer is introduced into the regularized cloaking construction . We derive sharp asymptotic estimates in assessing the cloaking performance. The proposed cloaking scheme is capable of nearly cloaking an arbitrary content with a high accuracy.

Loading...
Thumbnail Image
Item

A priori error analysis for state constrained boundary control problems : Part I: Control discretization

2009, Krumbiegel, Klaus, Meyer, Christian, Rösch, Arnd

This is the first of two papers concerned with a state-constrained optimal control problems with boundary control, where the state constraints are only imposed in an interior subdomain. We apply the virtual control concept introduced in [20] to regularize the problem. The arising regularized optimal control problem is discretized by finite elements and linear and continuous ansatz functions for the boundary control. In the first part of the work, we investigate the errors induced by the regularization and the discretization of the boundary control. The second part deals with the error arising from discretization of the PDE. Since the state constraints only appear in an inner subdomain, the obtained order of convergence exceeds the known results in the field of a priori analysis for state-constrained problems

Loading...
Thumbnail Image
Item

Regularization of statistical inverse problems and the Bakushinskii veto

2010, Becker, Saskia

Literaturverz. In the deterministic context Bakushinskiui's theorem excludes the existence of purely data driven convergent regularization for ill-posed problems. We will prove in the present work that in the statistical setting we can either construct a counter example or develop an equivalent formulation depending on the considered class of probability distributions. Hence, Bakushinskiui's theorem does not generalize to the statistical context, although this has often been assumed in the past. To arrive at this conclusion, we will deduce from the classic theory new concepts for a general study of statistical inverse problems and perform a systematic clarification of the key ideas of statistical regularization

Loading...
Thumbnail Image
Item

Analysis of profile functions for general linear regularization methods

2006, Mathé, Peter, Hofmann, Bernd

The stable approximate solution of ill-posed linear operator equations in Hilbert spaces requires regularization. Tight bounds for the noise-free part of the regularization error are constitutive for bounding the overall error. Norm bounds of the noise-free part which decrease to zero along with the regularization parameter are called profile functions and are subject of our analysis. The interplay between properties of the regularization and certain smoothness properties of solution sets, which we shall describe in terms of source-wise representations is crucial for the decay of associated profile functions. On the one hand, we show that a given decay rate is possible only if the underlying true solution has appropriate smoothness. On the other hand, if smoothness fits the regularization, then decay rates are easily obtained. If smoothness does not fit, then we will measure this in terms of some distance function. Tight bounds for these allow us to obtain profile functions. Finally we study the most realistic case when smoothness is measured with respect to some operator which is related to the one governing the original equation only through a link condition. In many parts the analysis is done on geometric basis, extending classical concepts of linear regularization theory in Hilbert spaces ...

Loading...
Thumbnail Image
Item

Optimality conditions and Moreau--Yosida regularization for almost sure state constraints

2021, Geiersbach, Caroline, Hintermüller, Michael

We analyze a potentially risk-averse convex stochastic optimization problem, where the control is deterministic and the state is a Banach-valued essentially bounded random variable. We obtain strong forms of necessary and sufficient optimality conditions for problems subject to equality and conical constraints. We propose a Moreau--Yosida regularization for the conical constraint and show consistency of the optimality conditions for the regularized problem as the regularization parameter is taken to infinity.

Loading...
Thumbnail Image
Item

Regularization for optimal control problems associated to nonlinear evolution equations

2019, Meinlschmidt, Hannes, Meyer, Christian, Rehberg, Joachim

It is well-known that in the case of a sufficiently nonlinear general optimal control problem there is very frequently the necessity for a compactness argument in order to pass to the limit in the state equation in the standard ``calculus of variations'' proof for the existence of optimal controls. For time-dependent state equations, i.e., evolution equations, this is in particular unfortunate due to the difficult structure of compact sets in Bochner-type spaces. In this paper, we propose an abstract function space and a suitable regularization- or Tychonov term for the objective functional which allows for the usual standard reasoning in the proof of existence of optimal controls and which admits a reasonably favorable structure in the characterization of optimal solutions via first order necessary conditions in, generally, the form of a variational inequality of obstacle-type in time. We establish the necessary properties of the function space and the Tychonov term and derive the aforementioned variational inequality. The variational inequality can then be reformulated as a projection identity for the optimal control under additional assumptions. We give sufficient conditions on when these are satisfied. The considerations are complemented with a series of practical examples of possible constellations and choices in dependence on the varying control spaces required for the evolution equations at hand.

Loading...
Thumbnail Image
Item

Solving joint chance constrained problems using regularization and Benders decomposition

2018, Adam, Lukás, Branda, Martin, Heitsch, Holger, Henrion, René

In this paper we investigate stochastic programms with joint chance constraints. We consider discrete scenario set and reformulate the problem by adding auxiliary variables. Since the resulting problem has a difficult feasible set, we regularize it. To decrease the dependence on the scenario number, we propose a numerical method by iteratively solving a master problem while adding Benders cuts. We find the solution of the slave problem (generating the Benders cuts) in a closed form and propose a heuristic method to decrease the number of cuts. We perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with continuous distribution.

Loading...
Thumbnail Image
Item

Regularization error estimates for semilinear elliptic optimal control problems with pointwise state and control constraints

2010, Krumbiegel, Klaus, Neitzel, Ira, Rösch, Arnd

In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. A sufficient second order optimality condition and uniqueness of the dual variables are assumed for that problem. Sufficient second order optimality conditions are shown for regularized problems with small regularization parameter. Moreover, error estimates with respect to the regularization parameter are derived

Loading...
Thumbnail Image
Item

Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints

2010, Krumbiegel, Klaus, Neitzel, Ira, Rösch, Arnd

We develop sufficient optimality conditions for a Moreau-Yosida regularized optimal control problem governed by a semilinear elliptic PDE with pointwise constraints on the state and the control. We make use of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept, for which standard second order sufficient conditions have been shown. Moreover, we compare both regularization approaches within a numerical example