Search Results

Now showing 1 - 4 of 4
  • Item
    Applications of MXenes in human-like sensors and actuators
    (New York, NY [u.a.] : Springer, 2022) Pang, Jinbo; Peng, Songang; Hou, Chongyang; Wang, Xiao; Wang, Ting; Cao, Yu; Zhou, Weijia; Sun, Ding; Wang, Kai; Rümmeli, Mark H.; Cuniberti, Gianaurelio; Liu, Hong
    Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications. [Figure not available: see fulltext.]
  • Item
    Zielflächenorientierte, präzise Echtzeit-Fungizidapplikation in Getreide
    (Darmstadt : KTBL, 2015) Dammer, Karl-Heinz; Hamdorf, André; Ustyuzhanin, Anton; Schirrmann, Michael; Leithold, Peer; Leithold, Hermann; Volk, Thomas; Tackenberg, Maria
    Im Rahmen eines Verbundprojektes wurden Echtzeit-Applikationstechnologien mit berührungslosen Sensoren für präzise Fungizid-Spritzungen in Getreide entwickelt. Das Entscheidungshilfe- System proPlant expert.classic bzw. die Internetversion proPlant expert.com (proPlant GmbH) empfiehlt geeignete Fungizide und Dosierungen für ein bestimmtes Infektionsszenario der acht wichtigsten Blatt- und Ährenkrankheiten von Winterweizen. Das Precision- Farming-Modul „Fungizid“, welches auf dem Terminal in der Traktorenkabine läuft, steuert das präzise Spritzverfahren. Das Modul bestimmt die lokale Zielapplikationsmenge während des Spritzens durch Nutzung des lokalen Ultraschallsensorwerts als Eingabeparameter. In den Jahren 2013 und 2014 wurden Feldversuche in Winterweizen durchgeführt, um die Beziehung zwischen den Sensorwerten (Ultraschall- und Kamerasensor) und den Pflanzenparametern Pflanzenoberfläche (Leaf Area Index, LAI) sowie Biomasse zu analysieren. Diese sind für einen örtlich angepassten variablen Fungizideinsatz zur Bemessung der Spritzmenge wichtig. Die Messungen wurden mehrmals während der Vegetationsperiode an visuell ausgewählten Stichprobenpunkten entsprechend der unterschiedlichen Bestandsdichte durchgeführt. Nach Änderungen an der Sensortechnik konnten für 2014 signifikante lineare Regressionsmodelle zur Beschreibung der Beziehung zwischen den Sensorwerten und den zwei Pflanzenparametern LAI sowie Biomasse gefunden werden.
  • Item
    Applications of nanogenerators for biomedical engineering and healthcare systems
    (Weinheim : Wiley, 2021) Wang, Wanli; Pang, Jinbo; Su, Jie; Li, Fujiang; Li, Qiang; Wang, Xiaoxiong; Wang, Jingang; Ibarlucea, Bergoi; Liu, Xiaoyan; Li, Yufen; Zhou, Weijia; Wang, Kai; Han, Qingfang; Liu, Lei; Zang, Ruohan; Rümmeli, Mark H.; Li, Yang; Liu, Hong; Hu, Han; Cuniberti, Gianaurelio
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self‐powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self‐powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real‐time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks. The combination of nanogenerator and biomedicine have been accelerating the development of self‐powered biomedical devices, which show a bright future in biomedicine and healthcare such as smart sensing, and therapy.
  • Item
    High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings
    (New York, NY : IEEE, 2016) Habisreuther, Tobias; Elsmann, T.; Graf, A.; Schmidt, M.A.
    Strain sensor designs and strain measurements based on single-crystal sapphire fibers with inscribed first-order fiber Bragg gratings for applications up to 600 °C are presented. We report on all the details of two different sensor designs; for instance, we show that the resolution of multimode sapphire fiber Bragg grating (SFBG) strain sensors is about l / l = ¼ 10-5 (10 µstrain), which is comparable with state-of-the-art high-temperature sensors. We apply our sensors for the determination of the thermal expansion coefficients of high-temperature steel alloys, showing a good match to known values. Hence, we believe that SFBG sensors may represent a promising alternative to currently used non-optic-based strain-detecting devices.