Search Results

Now showing 1 - 2 of 2
  • Item
    Morphology controlled preparation of monodisperse TiO2 nanorods and nanoparticles for optical nanocomposites
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2011) Bentz, Dirk; Becker-Willinger, Carsten; Schmitz-Stöwe, Sabine; Veith, Michael
    Anatase nanoparticles and nanorods were obtained through a modified sol-gel route from titanium(IV) bis(acetylacetonate) diisopropoxide. For particle synthesis a mixture of oleic acid and oleyl amine has been used which offers not only control on particle morphology but also provides organically capped surface modified particles, which can be readily mixed with acrylic monomers yielding completely transparent dispersions. UV- and thermal curing of the monomer / particle mixture lead to clear coatings without any nanoparticle agglomeration.
  • Item
    Recombinant phage coated 1D Al2O3 nanostructures for controlling the adhesion and proliferation of endothelial cells
    (New York [u.a.] : Hindawi, 2015) Lee, Juseok; Jeon, Hojeong; Haidar, Ayman; Abdul-Khaliq, Hashim; Veith, Michael; Aktas, Cenk; Kim, Youngjun
    A novel synthesis of a nanostructured cell adhesive surface is investigated for future stent developments. One-dimensional (1D) Al2O3 nanostructures were prepared by chemical vapor deposition of a single source precursor. Afterwards, recombinant filamentous bacteriophages which display a short binding motif with a cell adhesive peptide (RGD) on p3 and p8 proteins were immobilized on these 1D Al2O3 nanostructures by a simple dip-coating process to study the cellular response of human endothelial EA hy.926. While the cell density decreased on as-deposited 1D Al2O3 nanostructures, we observed enhanced cell proliferation and cell-cell interaction on recombinant phage overcoated 1D Al2O3 nanostructures. The recombinant phage overcoating also supports an isotropic cell spreading rather than elongated cell morphology as we observed on as-deposited Al2O3 1D nanostructures.