Search Results

Now showing 1 - 6 of 6
  • Item
    Timing cellular decision making under noise via cell-cell communication
    (San Francisco, CA : Public Library of Science (PLoS), 2009) Koseska, A.; Zaikin, A.; Kurths, J.; García-Ojalvo, J.
    Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact.
  • Item
    An electronic analog of synthetic genetic networks
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Hellen, E.H.; Volkov, E.; Kurths, J.; Dana, S.K.
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.
  • Item
    Lévy noise improves the electrical activity in a neuron under electromagnetic radiation
    (San Francisco, CA : Public Library of Science (PLoS), 2017) Wu, J.; Xu, Y.; Ma, J.
    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Levy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Levy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Levy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Levy noise intensity are depicted. The increasing of Levy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Levy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Levy noise distribution are detected.
  • Item
    Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics
    (San Francisco, CA : Public Library of Science (PLoS), 2016) Tupikina, L.; Molkenthin, N.; López, C.; Hernández-García, E.; Marwan, N.; Kurths, J.
  • Item
    Sample-based approach can outperform the classical dynamical analysis - Experimental confirmation of the basin stability method
    (London : Nature Publishing Group, 2017) Brzeski, P.; Wojewoda, J.; Kapitaniak, T.; Kurths, J.; Perlikowski, P.
    In this paper we show the first broad experimental confirmation of the basin stability approach. The basin stability is one of the sample-based approach methods for analysis of the complex, multidimensional dynamical systems. We show that investigated method is a reliable tool for the analysis of dynamical systems and we prove that it has a significant advantages which make it appropriate for many applications in which classical analysis methods are difficult to apply. We study theoretically and experimentally the dynamics of a forced double pendulum. We examine the ranges of stability for nine different solutions of the system in a two parameter space, namely the amplitude and the frequency of excitation. We apply the path-following and the extended basin stability methods (Brzeski et al., Meccanica 51(11), 2016) and we verify obtained theoretical results in experimental investigations. Comparison of the presented results show that the sample-based approach offers comparable precision to the classical method of analysis. However, it is much simpler to apply and can be used despite the type of dynamical system and its dimensions. Moreover, the sample-based approach has some unique advantages and can be applied without the precise knowledge of parameter values.
  • Item
    Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system
    (London : Nature Publishing Group, 2017) Tony, J.; Subarna, S.; Syamkumar, K.S.; Sudha, G.; Akshay, S.; Gopalakrishnan, E.A.; Surovyatkina, E.; Sujith, R.I.
    Many systems found in nature are susceptible to tipping, where they can shift from one stable dynamical state to another. This shift in dynamics can be unfavorable in systems found in various fields ranging from ecology to finance. Hence, it is important to identify the factors that can lead to tipping in a physical system. Tipping can mainly be brought about by a change in parameter or due to the influence of external fluctuations. Further, the rate at which the parameter is varied also determines the final state that the system attains. Here, we show preconditioned rate induced tipping in experiments and in a theoretical model of a thermoacoustic system. We provide a specific initial condition (preconditioning) and vary the parameter at a rate higher than a critical rate to observe tipping. We find that the critical rate is a function of the initial condition. Our study is highly relevant because the parameters that dictate the asymptotic behavior of many physical systems are temporally dynamic.