Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces

Abstract

Biologically inspired, fibrillar dry adhesives continue to attract much attention as they are instrumental for emerging applications and technologies. To date, the adhesion of micropatterned gecko-inspired surfaces has predominantly been tested on stiff, smooth substrates. However, all natural and almost all artificial surfaces have roughnesses on one or more different length scales. In the present approach, micropillar-patterned PDMS surfaces with superior adhesion to glass substrates with different roughnesses are designed and analyzed. The results reveal for the first time adhesive and nonadhesive states depending on the micropillar geometry relative to the surface roughness profile. The data obtained further demonstrate that, in the adhesive regime, fibrillar gecko-inspired adhesive structures can be used with advantage on rough surfaces; this finding may open up new applications in the fields of robotics, biomedicine, and space exploration.

Description
Keywords
adhesion, surface roughness, gecko-inspired, fibrillar dry adhesives
Citation
Barreau, V., Hensel, R., Guimard, N. K., Ghatak, A., McMeeking, R. M., & Arzt, E. (2016). Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces. 26. https://doi.org//10.1002/adfm.201600652
License
CC BY-NC 4.0 Unported