An AI-based open recommender system for personalized labor market driven education

Loading...
Thumbnail Image
Date
2022
Volume
52
Issue
Journal Title
Title
Series Titel
Publisher
Amsterdam [u.a.] : Elsevier Science
Abstract

Attaining those skills that match labor market demand is getting increasingly complicated, not in the last place in engineering education, as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Anticipating and addressing such dynamism is a fundamental challenge to twenty-first century education. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. In this paper, we propose a novel, Artificial Intelligence (AI) driven approach to the development of an open, personalized, and labor market oriented learning recommender system, called eDoer. We discuss the complete system development cycle starting with a systematic user requirements gathering, and followed by system design, implementation, and validation. Our recommender prototype (1) derives the skill requirements for particular occupations through an analysis of online job vacancy announcements


(2) decomposes skills into learning topics


(3) collects a variety of open online educational resources that address those topics


(4) checks the quality of those resources and topic relevance with three intelligent prediction models


(5) helps learners to set their learning goals towards their desired job-related skills


(6) recommends personalized learning pathways and learning content based on individual learning goals


and (7) provides assessment services for learners to monitor their progress towards their desired learning objectives. Accordingly, we created a learning dashboard focusing on three Data Science related jobs and conducted an initial validation of eDoer through a randomized experiment. Controlling for the effects of prior knowledge as assessed by means of a pretest, the randomized experiment provided tentative support for the hypothesis that learners who engaged with personal recommendations provided by eDoer to acquire knowledge of basic statistics, attained higher scores on the posttest than those who did not. The hypothesis that learners who received personalized content in terms of format, length, level of detail, and content type, would achieve higher scores than those receiving non-personalized content was not supported.

Description
Keywords
Educational data mining, Open educational resources, Recommender systems
Citation
Tavakoli, M., Faraji, A., Vrolijk, J., Molavi, M., Mol, S. T., & Kismihók, G. (2022). An AI-based open recommender system for personalized labor market driven education. 52. https://doi.org//10.1016/j.aei.2021.101508
License
CC BY 4.0 Unported