Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines

Abstract

The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.

Description
Keywords
ammonia, carbonyl compound, catalysis, catalyst, life science, reduction, ruthenium, steroid
Citation
Senthamarai, T., Murugesan, K., Schneidewind, J., Kalevaru, N. V., Baumann, W., Neumann, H., et al. (2018). Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. 9. https://doi.org//10.1038/s41467-018-06416-6
Collections
License
CC BY 4.0 Unported