Group-Graded Rings Satisfying the Strong Rank Condition

Loading...
Thumbnail Image

Date

Volume

22

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

A ring R satisfies the strong rank condition (SRC) if, for every natural number n, the free R-submodules of Rⁿ all have rank ≤n. Let G be a group and R a ring strongly graded by G such that the base ring R₁ is a domain. Using an argument originated by Laurent Bartholdi for studying cellular automata, we prove that R satisfies SRC if and only if R₁ satisfies SRC and G is amenable. The special case of this result for group rings allows us to prove a characterization of amenability involving the group von Neumann algebra that was conjectured by Wolfgang Lück. In addition, we include two applications to the study of group rings and their modules.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.