Hölder Continuity of the Spectra for Aperiodic Hamiltonians
Loading...
Date
2019
Volume
5
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract
We study the spectral location of a strongly pattern equivariant Hamiltonians arising through configurations on a colored lattice. Roughly speaking, two configurations are "close to each other" if, up to a translation, they "almost coincide" on a large fixed ball. The larger this ball is, the more similar they are, and this induces a metric on the space of the corresponding dynamical systems. Our main result states that the map which sends a given configuration into the spectrum of its associated Hamiltonian, is Hölder (even Lipschitz) continuous in the usual Hausdorff metric. Specifically, the spectral distance of two Hamiltonians is estimated by the distance of the corresponding dynamical systems.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.