A nonlinear free boundary problem with a self-driven Bernoulli condition
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We study a Bernoulli type free boundary problem with two phases and a nonlinear energy superposition. We show that, for this problem, the Bernoulli constant, which determines the gradient jump condition across the free boundary, is of global type and it is indeed determined by the weighted volumes of the phases. In particular, the Bernoulli condition that we obtain can be seen as a pressure prescription in terms of the volume of the two phases of the minimizer itself (and therefore it depends on the minimizer itself and not only on the structural constants of the problem). Another property of this type of problems is that the minimizer in a given domain is not necessarily a minimizer in a smaller subdomain, due to the nonlinear structure of the problem. Due to these features, this problem is highly unstable as opposed to the classical case studied by Alt, Caffarelli and Friedman. It also interpolates the classical case, in the sense that the blow-up limits are minimizers of the Alt-Caffarelli-Friedman functional. Namely, the energy of the problem somehow linearizes in the blow-up limit. We also develop a detailed optimal regularity theory for the minimizers and for their free boundaries.
Description
Keywords
Citation
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.