A semismooth Newton method with analytical path-following for the H1-projection onto the Gibbs simplex

Loading...
Thumbnail Image
Date
2016
Volume
2340
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

An efficient, function-space-based second-order method for the H1-projection onto the Gibbs-simplex is presented. The method makes use of the theory of semismooth Newton methods in function spaces as well as Moreau-Yosida regularization and techniques from parametric optimization. A path-following technique is considered for the regularization parameter updates. A rigorous first and second-order sensitivity analysis of the value function for the regularized problem is provided to justify the update scheme. The viability of the algorithm is then demonstrated for two applications found in the literature: binary image inpainting and labeled data classification. In both cases, the algorithm exhibits meshindependent behavior.

Description
Keywords
Citation
Adam, L., Hintermüller, M., & Surowiec, T. M. (2016). A semismooth Newton method with analytical path-following for the H1-projection onto the Gibbs simplex. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.