Bifurcations in the Sakaguchi-Kuramoto model

Loading...
Thumbnail Image
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We analyze the Sakaguchi-Kuramoto model of coupled phase oscillators in a continuum limit given by a frequency dependent version of the Ott-Antonsen system. Based on a self-consistency equation, we provide a detailed analysis of partially synchronized states, their bifurcation from the completely incoherent state and their stability properties. We use this method to analyze the bifurcations for various types of frequency distributions and explain the appearance of non-universal synchronization transitions.

Description
Keywords
Synchronization, coupled oscillators, Sakaguchi-Kuramoto model, Ott-Antonsen reduction
Citation
Citation
Omel’chenko, O., & Wolfrum, M. (2013). Bifurcations in the Sakaguchi-Kuramoto model (Version publishedVersion, Vol. 1791). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections