On the stability of elastic-plastic systems with hardening

Loading...
Thumbnail Image

Date

Volume

1223

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

This paper discusses the stability of quasi-static paths for a continuous elastic-plastic system with hardening in a one-dimensional (bar) domain. Mathematical formulations, as well as existence and uniqueness results for dynamic and quasi-static problems involving elastic-plastic systems with linear kinematic hardening are recalled in the paper. The concept of stability of quasi-static paths used here is essentially a continuity property of the system dynamic solutions relatively to the quasi-static ones, when (as in Lyapunov stability) the size of initial perturbations is decreased and the rate of application of the forces (which plays the role of the small parameter in singular perturbation problems) is also decreased to zero. The stability of the quasi-static paths of these elastic-plastic systems is the main result proved in the paper.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.