Convergence of Fourier-Wavelet models for Gaussian random processes

Loading...
Thumbnail Image

Date

Volume

1239

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Mean square convergence and convergence in probability of Fourier-Wavelet Models (FWM) of stationary Gaussian Random processes in the metric of Banach space of continuously differentiable functions and in Sobolev space are studied. Sufficient conditions for the convergence formulated in the frame of spectral functions are given. It is shown that the given rates of convergence of FWM in the mean square obtained in the Nikolskiui-Besov classes cannot be improved.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.