Adaptive goodness-of-fit tests based on signed ranks
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Within the nonparametric regression model with unknown regression function $l$ and independent, symmetric errors, a new multiscale signed rank statistic is introduced and a conditional multiple test of the simple hypothesis $l = 0$ against a nonparametric alternative is proposed. This test is distribution-free and exact for finite samples even in the heteroscedastic case. It adapts in a certain sense to the unknown smoothness of the regression function under the alternative, and it is uniformly consistent against alternatives whose sup-norm tends to zero at the fastest possible rate. The test is shown to be asymptotically optimal in two senses: It is rate-optimal adaptive against Hölder classes. Furthermore, its relative asymptotic efficiency with respect to an asymptotically minimax optimal test under sup-norm loss is close to one in case of homoscedastic Gaussian errors within a broad range of Hölder classes simultaneously.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.